In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github. com/sail-sg/lm-random-memory-access.
Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.
Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
Multiple Instance Learning (MIL) has emerged as a dominant paradigm to extract discriminative feature representations within Whole Slide Images (WSIs) in computational pathology. Despite driving notable progress, existing MIL approaches suffer from limitations in facilitating comprehensive and efficient interactions among instances, as well as challenges related to time-consuming computations and overfitting. In this paper, we incorporate the Selective Scan Space State Sequential Model (Mamba) in Multiple Instance Learning (MIL) for long sequence modeling with linear complexity, termed as MambaMIL. By inheriting the capability of vanilla Mamba, MambaMIL demonstrates the ability to comprehensively understand and perceive long sequences of instances. Furthermore, we propose the Sequence Reordering Mamba (SR-Mamba) aware of the order and distribution of instances, which exploits the inherent valuable information embedded within the long sequences. With the SR-Mamba as the core component, MambaMIL can effectively capture more discriminative features and mitigate the challenges associated with overfitting and high computational overhead. Extensive experiments on two public challenging tasks across nine diverse datasets demonstrate that our proposed framework performs favorably against state-of-the-art MIL methods. The code is released at //github.com/isyangshu/MambaMIL.
Using Large Language Models (LLMs) for Process Mining (PM) tasks is becoming increasingly essential, and initial approaches yield promising results. However, little attention has been given to developing strategies for evaluating and benchmarking the utility of incorporating LLMs into PM tasks. This paper reviews the current implementations of LLMs in PM and reflects on three different questions. 1) What is the minimal set of capabilities required for PM on LLMs? 2) Which benchmark strategies help choose optimal LLMs for PM? 3) How do we evaluate the output of LLMs on specific PM tasks? The answer to these questions is fundamental to the development of comprehensive process mining benchmarks on LLMs covering different tasks and implementation paradigms.
With appropriate data selection and training techniques, Large Language Models (LLMs) have demonstrated exceptional success in various medical examinations and multiple-choice questions. However, the application of LLMs in medical dialogue generation-a task more closely aligned with actual medical practice-has been less explored. This gap is attributed to the insufficient medical knowledge of LLMs, which leads to inaccuracies and hallucinated information in the generated medical responses. In this work, we introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding (MedKP) framework, which integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions. Evaluated with comprehensive metrics, our experiments on two large-scale, real-world online medical consultation datasets (MedDG and KaMed) demonstrate that MedKP surpasses multiple baselines and mitigates the incidence of hallucinations, achieving a new state-of-the-art. Extensive ablation studies further reveal the effectiveness of each component of MedKP. This enhancement advances the development of reliable, automated medical consultation responses using LLMs, thereby broadening the potential accessibility of precise and real-time medical assistance.
Distributed Deep Learning (DDL), as a paradigm, dictates the use of GPU-based clusters as the optimal infrastructure for training large-scale Deep Neural Networks (DNNs). However, the high cost of such resources makes them inaccessible to many users. Public cloud services, particularly Spot Virtual Machines (VMs), offer a cost-effective alternative, but their unpredictable availability poses a significant challenge to the crucial checkpointing process in DDL. To address this, we introduce DeepVM, a novel solution that recommends cost-effective cluster configurations by intelligently balancing the use of Spot and On-Demand VMs. DeepVM leverages a four-stage process that analyzes instance performance using the FLOPP (FLoating-point Operations Per Price) metric, performs architecture-level analysis with linear programming, and identifies the optimal configuration for the user-specific needs. Extensive simulations and real-world deployments in the AWS environment demonstrate that DeepVM consistently outperforms other policies, reducing training costs and overall makespan. By enabling cost-effective checkpointing with Spot VMs, DeepVM opens up DDL to a wider range of users and facilitates a more efficient training of complex DNNs.
Many real-world problems can be formulated as a constrained Traveling Salesman Problem (TSP). However, the constraints are always complex and numerous, making the TSPs challenging to solve. When the number of complicated constraints grows, it is time-consuming for traditional heuristic algorithms to avoid illegitimate outcomes. Learning-based methods provide an alternative to solve TSPs in a soft manner, which also supports GPU acceleration to generate solutions quickly. Nevertheless, the soft manner inevitably results in difficulty solving hard-constrained problems with learning algorithms, and the conflicts between legality and optimality may substantially affect the optimality of the solution. To overcome this problem and to have an effective solution against hard constraints, we proposed a novel learning-based method that uses looking-ahead information as the feature to improve the legality of TSP with Time Windows (TSPTW) solutions. Besides, we constructed TSPTW datasets with hard constraints in order to accurately evaluate and benchmark the statistical performance of various approaches, which can serve the community for future research. With comprehensive experiments on diverse datasets, MUSLA outperforms existing baselines and shows generalizability potential.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.