To understand collective network behavior in the complex human brain, pairwise correlation networks alone are insufficient for capturing the high-order interactions that extend beyond pairwise interactions and play a crucial role in brain network dynamics. These interactions often reveal intricate relationships among multiple brain networks, significantly influencing cognitive processes. In this study, we explored the correlation of correlation networks and topological network analysis with resting-state fMRI to gain deeper insights into these higher-order interactions and their impact on the topology of brain networks, ultimately enhancing our understanding of brain function. We observed that the correlation of correlation networks highlighted network connections while preserving the topological structure of correlation networks. Our findings suggested that the correlation of correlation networks surpassed traditional correlation networks, showcasing considerable potential for applications in various areas of network science. Moreover, after applying topological network analysis to the correlation of correlation networks, we observed that some high-order interaction hubs predominantly occurred in primary and high-level cognitive areas, such as the visual and fronto-parietal regions. These high-order hubs played a crucial role in information integration within the human brain.
Today's information society relies on cryptography to achieve security goals such as confidentiality, integrity, authentication, and non-repudiation for digital communications. Here, public-key cryptosystems play a pivotal role to share encryption keys and create digital signatures. However, quantum computers threaten the security of traditional public-key cryptosystems as they can tame computational problems underlying the schemes, i.e., discrete logarithm and integer factorization. The prospective arrival of capable-enough quantum computers already threatens today's secret communication in terms of their long-term secrecy when stored to be later decrypted. Therefore, researchers strive to develop and deploy alternative schemes. In this work, evaluate a key exchange protocol based on combining public-key schemes with physical-layer security, anticipating the prospect of quantum attacks. If powerful quantum attackers cannot immediately obtain private keys, legitimate parties have a window of short-term secrecy to perform a physical-layer jamming key exchange (JKE) to establish a long-term shared secret. Thereby, the protocol constraints the computation time available to the attacker to break the employed public-key cryptography. In this paper, we outline the protocol, discuss its security, and point out challenges to be resolved.
Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them. However, today's PINNs are often trained for a single physics task and require computationally expensive re-training for each new task, even for tasks from similar physics domains. To address this limitation, this paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution. Drawing inspiration from the neurodevelopment of precocial species that have evolved to learn, predict and react quickly to their environment, we envision PINNs that are pre-wired with connection strengths inducing strong biases towards efficient learning of physics. A novel two-stage stochastic programming formulation coupling evolutionary selection pressure (based on proficiency over a distribution of physics tasks) with lifetime learning (to specialize on a sampled subset of those tasks) is proposed to instantiate the Baldwin effect. The evolved Baldwinian-PINNs demonstrate fast and physics-compliant prediction capabilities across a range of empirically challenging problem instances with more than an order of magnitude improvement in prediction accuracy at a fraction of the computation cost compared to state-of-the-art gradient-based meta-learning methods. For example, when solving the diffusion-reaction equation, a 70x improvement in accuracy was obtained while taking 700x less computational time. This paper thus marks a leap forward in the meta-learning of PINNs as generalizable physics solvers. Sample codes are available at \url{//github.com/chiuph/Baldwinian-PINN}.
In a context where the Brazilian judiciary system, the largest in the world, faces a crisis due to the slow processing of millions of cases, it becomes imperative to develop efficient methods for analyzing legal texts. We introduce uBERT, a hybrid model that combines Transformer and Recurrent Neural Network architectures to effectively handle long legal texts. Our approach processes the full text regardless of its length while maintaining reasonable computational overhead. Our experiments demonstrate that uBERT achieves superior performance compared to BERT+LSTM when overlapping input is used and is significantly faster than ULMFiT for processing long legal documents.
The massive proliferation of social media data represents a transformative opportunity for conflict studies and for tracking the proliferation and use of weaponry, as conflicts are increasingly documented in these online spaces. At the same time, the scale and types of data available are problematic for traditional open-source intelligence. This paper focuses on identifying specific weapon systems and the insignias of the armed groups using them as documented in the Ukraine war, as these tasks are critical to operational intelligence and tracking weapon proliferation, especially given the scale of international military aid given to Ukraine. The large scale of social media makes manual assessment difficult, however, so this paper presents early work that uses computer vision models to support this task. We demonstrate that these models can both identify weapons embedded in images shared in social media and how the resulting collection of military-relevant images and their post times interact with the offline, real-world conflict. Not only can we then track changes in the prevalence of images of tanks, land mines, military trucks, etc., we find correlations among time series data associated with these images and the daily fatalities in this conflict. This work shows substantial opportunity for examining similar online documentation of conflict contexts, and we also point to future avenues where computer vision can be further improved for these open-source intelligence tasks.
Visual illusions in humans arise when interpreting out-of-distribution stimuli: if the observer is adapted to certain statistics, perception of outliers deviates from reality. Recent studies have shown that artificial neural networks (ANNs) can also be deceived by visual illusions. This revelation raises profound questions about the nature of visual information. Why are two independent systems, both human brains and ANNs, susceptible to the same illusions? Should any ANN be capable of perceiving visual illusions? Are these perceptions a feature or a flaw? In this work, we study how visual illusions are encoded in diffusion models. Remarkably, we show that they present human-like brightness/color shifts in their latent space. We use this fact to demonstrate that diffusion models can predict visual illusions. Furthermore, we also show how to generate new unseen visual illusions in realistic images using text-to-image diffusion models. We validate this ability through psychophysical experiments that show how our model-generated illusions also fool humans.
In human social systems, debates are often seen as a means to resolve differences of opinion. However, in reality, debates frequently incur significant communication costs, especially when dealing with stubborn opponents. Inspired by this phenomenon, this paper examines the impact of malicious agents on the evolution of normal agents' opinions from the perspective of opinion evolution cost, and proposes corresponding solutions for the scenario in which malicious agents hold different opinions in multi-agent systems(MASs). First, this paper analyzes the negative impact of malicious agents on the opinion evolution process, reveals the additional evolution cost it brings, and provides a theoretical basis for the subsequent solutions. Secondly, based on the characteristics of opinion evolution, the malicious agent isolation algorithm based on opinion evolution direction vector is proposed, which does not strongly restrict the proportion of malicious agents. Additionally, an evolution rate adjustment mechanism is introduced, allowing the system to flexibly regulate the evolution process in complex situations, effectively achieving the trade-off between opinion evolution rate and cost. Extensive numerical simulations demonstrate that the algorithm can effectively eliminate the negative influence of malicious agents and achieve a balance between opinion evolution costs and convergence speed.
This short communication shows that the Chessography encryption scheme is incorrect, redundant, and the the security claims based on the complexity of chess games are unjustified. It also demonstrates an insufficient randomness in the final chess game positions, which could be of separate interest.
Mental health disorders are increasingly prevalent worldwide, creating an urgent need for innovative tools to support early diagnosis and intervention. This study explores the potential of Large Language Models (LLMs) in multimodal mental health diagnostics, specifically for detecting depression and Post Traumatic Stress Disorder through text and audio modalities. Using the E-DAIC dataset, we compare text and audio modalities to investigate whether LLMs can perform equally well or better with audio inputs. We further examine the integration of both modalities to determine if this can enhance diagnostic accuracy, which generally results in improved performance metrics. Our analysis specifically utilizes custom-formulated metrics; Modal Superiority Score and Disagreement Resolvement Score to evaluate how combined modalities influence model performance. The Gemini 1.5 Pro model achieves the highest scores in binary depression classification when using the combined modality, with an F1 score of 0.67 and a Balanced Accuracy (BA) of 77.4%, assessed across the full dataset. These results represent an increase of 3.1% over its performance with the text modality and 2.7% over the audio modality, highlighting the effectiveness of integrating modalities to enhance diagnostic accuracy. Notably, all results are obtained in zero-shot inferring, highlighting the robustness of the models without requiring task-specific fine-tuning. To explore the impact of different configurations on model performance, we conduct binary, severity, and multiclass tasks using both zero-shot and few-shot prompts, examining the effects of prompt variations on performance. The results reveal that models such as Gemini 1.5 Pro in text and audio modalities, and GPT-4o mini in the text modality, often surpass other models in balanced accuracy and F1 scores across multiple tasks.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.