The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in this setting are now readily recognized, and partial remedies are well known. Much less understood is the impact of population interference in panel experiments where treatment is sequentially randomized in the population, and the outcomes are observed at each time step. This paper proposes a general framework for studying population interference in panel experiments and presents new finite population estimation and inference results. Our findings suggest that, under mild assumptions, the addition of a temporal dimension to an experiment alleviates some of the challenges of population interference for certain estimands. In contrast, we show that the presence of carryover effects -- that is, when past treatments may affect future outcomes -- exacerbates the problem. Revisiting the special case of standard experiments with population interference, we prove a central limit theorem under weaker conditions than previous results in the literature and highlight the trade-off between flexibility in the design and the interference structure.
We are interested in creating statistical methods to provide informative summaries of random fields through the geometry of their excursion sets. To this end, we introduce an estimator for the length of the perimeter of excursion sets of random fields on $\mathbb{R}^2$ observed over regular square tilings. The proposed estimator acts on the empirically accessible binary digital images of the excursion regions and computes the length of a piecewise linear approximation of the excursion boundary. The estimator is shown to be consistent as the pixel size decreases, without the need of any normalization constant, and with neither assumption of Gaussianity nor isotropy imposed on the underlying random field. In this general framework, even when the domain grows to cover $\mathbb{R}^2$, the estimation error is shown to be of smaller order than the side length of the domain. For affine, strongly mixing random fields, this translates to a multivariate Central Limit Theorem for our estimator when multiple levels are considered simultaneously. Finally, we conduct several numerical studies to investigate statistical properties of the proposed estimator in the finite-sample data setting.
Shrinking pattern dimensions leads to an increased variety of defect types in semiconductor devices. This has spurred innovation in patterning approaches such as Directed self-assembly (DSA) for which no traditional, automatic defect inspection software exists. Machine Learning-based SEM image analysis has become an increasingly popular research topic for defect inspection with supervised ML models often showing the best performance. However, little research has been done on obtaining a dataset with high-quality labels for these supervised models. In this work, we propose a method for obtaining coherent and complete labels for a dataset of hexagonal contact hole DSA patterns while requiring minimal quality control effort from a DSA expert. We show that YOLOv8, a state-of-the-art neural network, achieves defect detection precisions of more than 0.9 mAP on our final dataset which best reflects DSA expert defect labeling expectations. We discuss the strengths and limitations of our proposed labeling approach and suggest directions for future work in data-centric ML-based defect inspection.
The research detailed in this paper scrutinizes Principal Component Analysis (PCA), a seminal method employed in statistics and machine learning for the purpose of reducing data dimensionality. Singular Value Decomposition (SVD) is often employed as the primary means for computing PCA, a process that indispensably includes the step of centering - the subtraction of the mean location from the data set. In our study, we delve into a detailed exploration of the influence of this critical yet often ignored or downplayed data centering step. Our research meticulously investigates the conditions under which two PCA embeddings, one derived from SVD with centering and the other without, can be viewed as aligned. As part of this exploration, we analyze the relationship between the first singular vector and the mean direction, subsequently linking this observation to the congruity between two SVDs of centered and uncentered matrices. Furthermore, we explore the potential implications arising from the absence of centering in the context of performing PCA via SVD from a spectral analysis standpoint. Our investigation emphasizes the importance of a comprehensive understanding and acknowledgment of the subtleties involved in the computation of PCA. As such, we believe this paper offers a crucial contribution to the nuanced understanding of this foundational statistical method and stands as a valuable addition to the academic literature in the field of statistics.
Considerable recent work has focused on methods for analyzing experiments which exhibit treatment interference -- that is, when the treatment status of one unit may affect the response of another unit. Such settings are common in experiments on social networks. We consider a model of treatment interference -- the K-nearest neighbors interference model (KNNIM) -- for which the response of one unit depends not only on the treatment status given to that unit, but also the treatment status of its $K$ ``closest'' neighbors. We derive causal estimands under KNNIM in a way that allows us to identify how each of the $K$-nearest neighbors contributes to the indirect effect of treatment. We propose unbiased estimators for these estimands and derive conservative variance estimates for these unbiased estimators. We then consider extensions of these estimators under an assumption of no weak interaction between direct and indirect effects. We perform a simulation study to determine the efficacy of these estimators under different treatment interference scenarios. We apply our methodology to an experiment designed to assess the impact of a conflict-reducing program in middle schools in New Jersey, and we give evidence that the effect of treatment propagates primarily through a unit's closest connection.
This paper studies the efficient estimation of a large class of treatment effect parameters that arise in the analysis of experiments. Here, efficiency is understood to be with respect to a broad class of treatment assignment schemes for which the marginal probability that any unit is assigned to treatment equals a pre-specified value, e.g., one half. Importantly, we do not require that treatment status is assigned in an i.i.d. fashion, thereby accommodating complicated treatment assignment schemes that are used in practice, such as stratified block randomization and matched pairs. The class of parameters considered are those that can be expressed as the solution to a restriction on the expectation of a known function of the observed data, including possibly the pre-specified value for the marginal probability of treatment assignment. We show that this class of parameters includes, among other things, average treatment effects, quantile treatment effects, local average treatment effects as well as the counterparts to these quantities in experiments in which the unit is itself a cluster. In this setting, we establish two results. First, we derive a lower bound on the asymptotic variance of estimators of the parameter of interest in the form of a convolution theorem. Second, we show that the n\"aive method of moments estimator achieves this bound on the asymptotic variance quite generally if treatment is assigned using a "finely stratified" design. By a "finely stratified" design, we mean experiments in which units are divided into groups of a fixed size and a proportion within each group is assigned to treatment uniformly at random so that it respects the restriction on the marginal probability of treatment assignment. In this sense, "finely stratified" experiments lead to efficient estimators of treatment effect parameters "by design" rather than through ex post covariate adjustment.
The core reasoning task for datalog engines is materialization, the evaluation of a datalog program over a database alongside its physical incorporation into the database itself. The de-facto method of computing it, is through the recursive application of inference rules. Due to it being a costly operation, it is a must for datalog engines to provide incremental materialization, that is, to adjust the computation to new data, instead of restarting from scratch. One of the major caveats, is that deleting data is notoriously more involved than adding, since one has to take into account all possible data that has been entailed from what is being deleted. Differential Dataflow is a computational model that provides efficient incremental maintenance, notoriously with equal performance between additions and deletions, and work distribution, of iterative dataflows. In this paper we investigate the performance of materialization with three reference datalog implementations, out of which one is built on top of a lightweight relational engine, and the two others are differential-dataflow and non-differential versions of the same rewrite algorithm, with the same optimizations.
The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper begins with a derivation of the latent variable proximal point (LVPP) method: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive (Bayesian) barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
Causal inference studies whether the presence of a variable influences an observed outcome. As measured by quantities such as the "average treatment effect," this paradigm is employed across numerous biological fields, from vaccine and drug development to policy interventions. Unfortunately, the majority of these methods are often limited to univariate outcomes. Our work generalizes causal estimands to outcomes with any number of dimensions or any measurable space, and formulates traditional causal estimands for nominal variables as causal discrepancy tests. We propose a simple technique for adjusting universally consistent conditional independence tests and prove that these tests are universally consistent causal discrepancy tests. Numerical experiments illustrate that our method, Causal CDcorr, leads to improvements in both finite sample validity and power when compared to existing strategies. Our methods are all open source and available at github.com/ebridge2/cdcorr.
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.