亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we present a generalizable workflow to identify documents in a historic language with a nonstandard language and script combination, Armeno-Turkish. We introduce the task of detecting distinct patterns of multilinguality based on the frequency of structured language alternations within a document.

相關內容

We present a unified framework for studying the identifiability of representations learned from simultaneously observed views, such as different data modalities. We allow a partially observed setting in which each view constitutes a nonlinear mixture of a subset of underlying latent variables, which can be causally related. We prove that the information shared across all subsets of any number of views can be learned up to a smooth bijection using contrastive learning and a single encoder per view. We also provide graphical criteria indicating which latent variables can be identified through a simple set of rules, which we refer to as identifiability algebra. Our general framework and theoretical results unify and extend several previous works on multi-view nonlinear ICA, disentanglement, and causal representation learning. We experimentally validate our claims on numerical, image, and multi-modal data sets. Further, we demonstrate that the performance of prior methods is recovered in different special cases of our setup. Overall, we find that access to multiple partial views enables us to identify a more fine-grained representation, under the generally milder assumption of partial observability.

Building upon the exact methods presented in our earlier work [J. Complexity, 2022], we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While we prove that the heuristic does not necessarily return an optimal solution, we obtain very promising results for all tested dimensions. For example, for moderate point set sizes $30 \leq n \leq 240$ in dimension 6, we obtain point sets with $L_{\infty}$ star discrepancy up to 35% better than that of the first $n$ points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We also provide a comparison with a recent energy functional introduced by Steinerberger [J. Complexity, 2019], showing that our heuristic performs better on all tested instances.

In this paper, we introduce the first algorithmic framework for Blackwell approachability on the sequence-form polytope, the class of convex polytopes capturing the strategies of players in extensive-form games (EFGs). This leads to a new class of regret-minimization algorithms that are stepsize-invariant, in the same sense as the Regret Matching and Regret Matching$^+$ algorithms for the simplex. Our modular framework can be combined with any existing regret minimizer over cones to compute a Nash equilibrium in two-player zero-sum EFGs with perfect recall, through the self-play framework. Leveraging predictive online mirror descent, we introduce Predictive Treeplex Blackwell$^+$ (PTB$^+$), and show a $O(1/\sqrt{T})$ convergence rate to Nash equilibrium in self-play. We then show how to stabilize PTB$^+$ with a stepsize, resulting in an algorithm with a state-of-the-art $O(1/T)$ convergence rate. We provide an extensive set of experiments to compare our framework with several algorithmic benchmarks, including CFR$^+$ and its predictive variant, and we highlight interesting connections between practical performance and the stepsize-dependence or stepsize-invariance properties of classical algorithms.

In this paper, we study a new problem, Film Removal (FR), which attempts to remove the interference of wrinkled transparent films and reconstruct the original information under films for industrial recognition systems. We first physically model the imaging of industrial materials covered by the film. Considering the specular highlight from the film can be effectively recorded by the polarized camera, we build a practical dataset with polarization information containing paired data with and without transparent film. We aim to remove interference from the film (specular highlights and other degradations) with an end-to-end framework. To locate the specular highlight, we use an angle estimation network to optimize the polarization angle with the minimized specular highlight. The image with minimized specular highlight is set as a prior for supporting the reconstruction network. Based on the prior and the polarized images, the reconstruction network can decouple all degradations from the film. Extensive experiments show that our framework achieves SOTA performance in both image reconstruction and industrial downstream tasks. Our code will be released at \url{//github.com/jqtangust/FilmRemoval}.

In this paper, we study a facility location problem within a competitive market context, where customer demand is predicted by a random utility choice model. Unlike prior research, which primarily focuses on simple constraints such as a cardinality constraint on the number of selected locations, we introduce routing constraints that necessitate the selection of locations in a manner that guarantees the existence of a tour visiting all chosen locations while adhering to a specified tour length upper bound. Such routing constraints find crucial applications in various real-world scenarios. The problem at hand features a non-linear objective function, resulting from the utilization of random utilities, together with complex routing constraints, making it computationally challenging. To tackle this problem, we explore three types of valid cuts, namely, outer-approximation and submodular cuts to handle the nonlinear objective function, as well as sub-tour elimination cuts to address the complex routing constraints. These lead to the development of two exact solution methods: a nested cutting plane and nested branch-and-cut algorithms, where these valid cuts are iteratively added to a master problem through two nested loops. We also prove that our nested cutting plane method always converges to optimality after a finite number of iterations. Furthermore, we develop a local search-based metaheuristic tailored for solving large-scale instances and show its pros and cons compared to exact methods. Extensive experiments are conducted on problem instances of varying sizes, demonstrating that our approach excels in terms of solution quality and computation time when compared to other baseline approaches.

In this study, we explore advanced strategies for enhancing software quality by detecting and refactoring data clumps, special types of code smells. Our approach transcends the capabilities of integrated development environments, utilizing a novel method that separates the detection of data clumps from the source access. This method facilitates data clump processing. We introduce a command-line interface plugin to support this novel method of processing data clumps. This research highlights the efficacy of modularized algorithms and advocates their integration into continuous workflows, promising enhanced code quality and efficient project management across various programming and integrated development environments.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司