As machine learning technology gets applied to actual products and solutions, new challenges have emerged. Models unexpectedly fail to generalize to small changes in the distribution, tend to be confident on novel data they have never seen, or cannot communicate the rationale behind their decisions effectively with the end users. Collectively, we face a trustworthiness issue with the current machine learning technology. This textbook on Trustworthy Machine Learning (TML) covers a theoretical and technical background of four key topics in TML: Out-of-Distribution Generalization, Explainability, Uncertainty Quantification, and Evaluation of Trustworthiness. We discuss important classical and contemporary research papers of the aforementioned fields and uncover and connect their underlying intuitions. The book evolved from the homonymous course at the University of T\"ubingen, first offered in the Winter Semester of 2022/23. It is meant to be a stand-alone product accompanied by code snippets and various pointers to further sources on topics of TML. The dedicated website of the book is //trustworthyml.io/.
We introduce Adversarial Diffusion Distillation (ADD), a novel training approach that efficiently samples large-scale foundational image diffusion models in just 1-4 steps while maintaining high image quality. We use score distillation to leverage large-scale off-the-shelf image diffusion models as a teacher signal in combination with an adversarial loss to ensure high image fidelity even in the low-step regime of one or two sampling steps. Our analyses show that our model clearly outperforms existing few-step methods (GANs, Latent Consistency Models) in a single step and reaches the performance of state-of-the-art diffusion models (SDXL) in only four steps. ADD is the first method to unlock single-step, real-time image synthesis with foundation models. Code and weights available under //github.com/Stability-AI/generative-models and //huggingface.co/stabilityai/ .
Despite the considerable potential of reinforcement learning (RL), robotics control tasks predominantly rely on imitation learning (IL) owing to its better sample efficiency. However, given the high cost of collecting extensive demonstrations, RL is still appealing if it can utilize limited imitation data for efficient autonomous self-improvement. Existing RL methods that utilize demonstrations either initialize the replay buffer with demonstrations and oversample them during RL training, which does not benefit from the generalization potential of modern IL methods, or pretrain the RL policy with IL on the demonstrations, which requires additional mechanisms to prevent catastrophic forgetting during RL fine-tuning. We propose imitation bootstrapped reinforcement learning (IBRL), a novel framework that first trains an IL policy on a limited number of demonstrations and then uses it to propose alternative actions for both online exploration and target value bootstrapping. IBRL achieves SoTA performance and sample efficiency on 7 challenging sparse reward continuous control tasks in simulation while learning directly from pixels. As a highlight of our method, IBRL achieves $6.4\times$ higher success rate than RLPD, a strong method that combines the idea of oversampling demonstrations with modern RL improvements, under the budget of 10 demos and 100K interactions in the challenging PickPlaceCan task in the Robomimic benchmark.
Language models produce a distribution over the next token; can we use this information to recover the prompt tokens? We consider the problem of language model inversion and show that next-token probabilities contain a surprising amount of information about the preceding text. Often we can recover the text in cases where it is hidden from the user, motivating a method for recovering unknown prompts given only the model's current distribution output. We consider a variety of model access scenarios, and show how even without predictions for every token in the vocabulary we can recover the probability vector through search. On Llama-2 7b, our inversion method reconstructs prompts with a BLEU of $59$ and token-level F1 of $78$ and recovers $27\%$ of prompts exactly. Code for reproducing all experiments is available at //github.com/jxmorris12/vec2text.
Existing Collaborative Filtering (CF) methods are mostly designed based on the idea of matching, i.e., by learning user and item embeddings from data using shallow or deep models, they try to capture the associative relevance patterns in data, so that a user embedding can be matched with relevant item embeddings using designed or learned similarity functions. However, as a cognition rather than a perception intelligent task, recommendation requires not only the ability of pattern recognition and matching from data, but also the ability of cognitive reasoning in data. In this paper, we propose to advance Collaborative Filtering (CF) to Collaborative Reasoning (CR), which means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other. Technically, we propose a Neural Collaborative Reasoning (NCR) framework to bridge learning and reasoning. Specifically, we integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives, and logic facilitates cognitive reasoning for informed decision making. An important challenge, however, is to bridge differentiable neural networks and symbolic reasoning in a shared architecture for optimization and inference. To solve the problem, we propose a modularized reasoning architecture, which learns logical operations such as AND ($\wedge$), OR ($\vee$) and NOT ($\neg$) as neural modules for implication reasoning ($\rightarrow$). In this way, logical expressions can be equivalently organized as neural networks, so that logical reasoning and prediction can be conducted in a continuous space. Experiments on real-world datasets verified the advantages of our framework compared with both shallow, deep and reasoning models.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.
Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.