亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Radial basis functions are typically used when discretization sche-mes require inhomogeneous node distributions. While spawning from a desire to interpolate functions on a random set of nodes, they have found successful applications in solving many types of differential equations. However, the weights of the interpolated solution, used in the linear superposition of basis functions to interpolate the solution, and the actual value of the solution are completely different. In fact, these weights mix the value of the solution with the geometrical location of the nodes used to discretize the equation. In this paper, we used nodal radial basis functions, which are interpolants of the impulse function at each node inside the domain. This transformation allows to solve a linear hyperbolic partial differential equation using series expansion rather than the explicit computation of a matrix inverse. This transformation effectively yields an implicit solver which only requires the multiplication of vectors with matrices. Because the solver requires neither matrix inverse nor matrix-matrix products, this approach is numerically more stable and reduces the error by at least two orders of magnitude, compared to other solvers using radial basis functions directly. Further, boundary conditions are integrated directly inside the solver, at no extra cost. The method is naturally conservative, keeping the error virtually constant throughout the computation.

相關內容

In many applications, we want to influence the decisions of independent agents by designing incentives for their actions. We revisit a fundamental problem in this area, called GAME IMPLEMENTATION: Given a game in standard form and a set of desired strategies, can we design a set of payment promises such that if the players take the payment promises into account, then all undominated strategies are desired? Furthermore, we aim to minimize the cost, that is, the worst-case amount of payments. We study the tractability of computing such payment promises and determine more closely what obstructions we may have to overcome in doing so. We show that GAME IMPLEMENTATION is NP-hard even for two players, solving in particular a long open question (Eidenbenz et al. 2011) and suggesting more restrictions are necessary to obtain tractability results. We thus study the regime in which players have only a small constant number of strategies and obtain the following. First, this case remains NP-hard even if each player's utility depends only on three others. Second, we repair a flawed efficient algorithm for the case of both small number of strategies and small number of players. Among further results, we characterize sets of desired strategies that can be implemented at zero cost as a kind of stable core of the game.

Safety constraints and optimality are important, but sometimes conflicting criteria for controllers. Although these criteria are often solved separately with different tools to maintain formal guarantees, it is also common practice in reinforcement learning to simply modify reward functions by penalizing failures, with the penalty treated as a mere heuristic. We rigorously examine the relationship of both safety and optimality to penalties, and formalize sufficient conditions for safe value functions (SVFs): value functions that are both optimal for a given task, and enforce safety constraints. We reveal this structure by examining when rewards preserve viability under optimal control, and show that there always exists a finite penalty that induces a safe value function. This penalty is not unique, but upper-unbounded: larger penalties do not harm optimality. Although it is often not possible to compute the minimum required penalty, we reveal clear structure of how the penalty, rewards, discount factor, and dynamics interact. This insight suggests practical, theory-guided heuristics to design reward functions for control problems where safety is important.

We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear system which is constructed by imposing appropriate conditions on the moments of the invariant distribution of the mean field limit and on the quadratic variation of the process. Our approach is easy to implement as it only requires the approximation of the moments via the ergodic theorem and the solution of a low-dimensional linear system. Moreover, we prove that our estimator is asymptotically unbiased in the limits of infinite data and infinite number of particles (mean field limit). In addition, we present several numerical experiments that validate the theoretical analysis and show the effectiveness of our methodology to accurately infer parameters in systems of interacting particles.

Jacobian and Hessian regularization aim to reduce the magnitude of the first and second-order partial derivatives with respect to neural network inputs, and they are predominantly used to ensure the adversarial robustness of image classifiers. In this work, we generalize previous efforts by extending the target matrix from zero to any matrix that admits efficient matrix-vector products. The proposed paradigm allows us to construct novel regularization terms that enforce symmetry or diagonality on square Jacobian and Hessian matrices. On the other hand, the major challenge for Jacobian and Hessian regularization has been high computational complexity. We introduce Lanczos-based spectral norm minimization to tackle this difficulty. This technique uses a parallelized implementation of the Lanczos algorithm and is capable of effective and stable regularization of large Jacobian and Hessian matrices. Theoretical justifications and empirical evidence are provided for the proposed paradigm and technique. We carry out exploratory experiments to validate the effectiveness of our novel regularization terms. We also conduct comparative experiments to evaluate Lanczos-based spectral norm minimization against prior methods. Results show that the proposed methodologies are advantageous for a wide range of tasks.

We introduce an integral representation of the Monge-Amp\`ere equation, which leads to a new finite difference method based upon numerical quadrature. The resulting scheme is monotone and fits immediately into existing convergence proofs for the Monge-Amp\`ere equation with either Dirichlet or optimal transport boundary conditions. The use of higher-order quadrature schemes allows for substantial reduction in the component of the error that depends on the angular resolution of the finite difference stencil. This, in turn, allows for significant improvements in both stencil width and formal truncation error. The resulting schemes can achieve a formal accuracy that is arbitrarily close to $\mathcal{O}(h^2)$, which is the optimal consistency order for monotone approximations of second order operators. We present three different implementations of this method. The first two exploit the spectral accuracy of the trapezoid rule on uniform angular discretizations to allow for computation on a nearest-neighbors finite difference stencil over a large range of grid refinements. The third uses higher-order quadrature to produce superlinear convergence while simultaneously utilizing narrower stencils than other monotone methods. Computational results are presented in two dimensions for problems of various regularity.

Surrogate models have shown to be an extremely efficient aid in solving engineering problems that require repeated evaluations of an expensive computational model. They are built by sparsely evaluating the costly original model and have provided a way to solve otherwise intractable problems. A crucial aspect in surrogate modelling is the assumption of smoothness and regularity of the model to approximate. This assumption is however not always met in reality. For instance in civil or mechanical engineering, some models may present discontinuities or non-smoothness, e.g., in case of instability patterns such as buckling or snap-through. Building a single surrogate model capable of accounting for these fundamentally different behaviors or discontinuities is not an easy task. In this paper, we propose a three-stage approach for the approximation of non-smooth functions which combines clustering, classification and regression. The idea is to split the space following the localized behaviors or regimes of the system and build local surrogates that are eventually assembled. A sequence of well-known machine learning techniques are used: Dirichlet process mixtures models (DPMM), support vector machines and Gaussian process modelling. The approach is tested and validated on two analytical functions and a finite element model of a tensile membrane structure.

In sparse estimation, in which the sum of the loss function and the regularization term is minimized, methods such as the proximal gradient method and the proximal Newton method are applied. The former is slow to converge to a solution, while the latter converges quickly but is inefficient for problems such as group lasso problems. In this paper, we examine how to efficiently find a solution by finding the convergence destination of the proximal gradient method. However, the case in which the Lipschitz constant of the derivative of the loss function is unknown has not been studied theoretically, and only the Newton method has been proposed for the case in which the Lipschitz constant is known. We show that the Newton method converges when the Lipschitz constant is unknown and extend the theory. Furthermore, we propose a new quasi-Newton method that avoids Hessian calculations and improves efficiency, and we prove that it converges quickly, providing a theoretical guarantee. Finally, numerical experiments show that the proposed method can significantly improve the efficiency.

The $k$-means algorithm is a very prevalent clustering method because of its simplicity, effectiveness, and speed, but its main disadvantage is its high sensitivity to the initial positions of the cluster centers. The global $k$-means is a deterministic algorithm proposed to tackle the random initialization problem of k-means but requires high computational cost. It partitions the data to $K$ clusters by solving all $k$-means sub-problems incrementally for $k=1,\ldots, K$. For each $k$ cluster problem, the method executes the $k$-means algorithm $N$ times, where $N$ is the number of data points. In this paper, we propose the global $k$-means$++$ clustering algorithm, which is an effective way of acquiring quality clustering solutions akin to those of global $k$-means with a reduced computational load. This is achieved by exploiting the center section probability that is used in the effective $k$-means$++$ algorithm. The proposed method has been tested and compared in various well-known real and synthetic datasets yielding very satisfactory results in terms of clustering quality and execution speed.

We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step of the episode followed by another agent (follower). The state evolution and rewards depend on the joint action pair of the leader and the follower. Such type of interactions can find applications in many domains such as smart grids, mechanism design, security, and policymaking. We are interested in how to learn policies for both the players with provable performance guarantee under a bandit feedback setting. We focus on a setup where both the leader and followers are {\em non-myopic}, i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP which can model continuous state-space which is very common in many RL applications. We propose a {\em model-free} RL algorithm and show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret bounds can be achieved for both the leader and the follower, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps under the bandit feedback information setup. Thus, our result holds even when the number of states becomes infinite. The algorithm relies on {\em novel} adaptation of the LSVI-UCB algorithm. Specifically, we replace the standard greedy policy (as the best response) with the soft-max policy for both the leader and the follower. This turns out to be key in establishing uniform concentration bound for the value functions. To the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games with non-myopic followers with function approximation.

Two combined numerical methods for solving time-varying semilinear differential-algebraic equations (DAEs) are obtained. These equations are also called degenerate DEs, descriptor systems, operator-differential equations and DEs on manifolds. The convergence and correctness of the methods are proved. When constructing methods we use, in particular, time-varying spectral projectors which can be numerically found. This enables to numerically solve and analyze the considered DAE in the original form without additional analytical transformations. To improve the accuracy of the second method, recalculation (a ``predictor-corrector'' scheme) is used. Note that the developed methods are applicable to the DAEs with the continuous nonlinear part which may not be continuously differentiable in $t$, and that the restrictions of the type of the global Lipschitz condition, including the global condition of contractivity, are not used in the theorems on the global solvability of the DAEs and on the convergence of the numerical methods. This enables to use the developed methods for the numerical solution of more general classes of mathematical models. For example, the functions of currents and voltages in electric circuits may not be differentiable or may be approximated by nondifferentiable functions. Presented conditions for the global solvability of the DAEs ensure the existence of an unique exact global solution for the corresponding initial value problem, which enables to compute approximate solutions on any given time interval (provided that the conditions of theorems or remarks on the convergence of the methods are fulfilled). In the paper, the numerical analysis of the mathematical model for a certain electrical circuit, which demonstrates the application of the presented theorems and numerical methods, is carried out.

北京阿比特科技有限公司