In this paper we present a new high order semi-implicit DG scheme on two-dimensional staggered triangular meshes applied to different nonlinear systems of hyperbolic conservation laws such as advection-diffusion models, incompressible Navier-Stokes equations and natural convection problems. While the temperature and pressure field are defined on a triangular main grid, the velocity field is defined on a quadrilateral edge-based staggered mesh. A semi-implicit time discretization is proposed, which separates slow and fast time scales by treating them explicitly and implicitly, respectively. The nonlinear convection terms are evolved explicitly using a semi-Lagrangian approach, whereas we consider an implicit discretization for the diffusion terms and the pressure contribution. High-order of accuracy in time is achieved using a new flexible and general framework of IMplicit-EXplicit (IMEX) Runge-Kutta schemes specifically designed to operate with semi-Lagrangian methods. To improve the efficiency in the computation of the DG divergence operator and the mass matrix, we propose to approximate the numerical solution with a less regular polynomial space on the edge-based mesh, which is defined on two sub-triangles that split the staggered quadrilateral elements. Due to the implicit treatment of the fast scale terms, the resulting numerical scheme is unconditionally stable for the considered governing equations. Contrarily to a genuinely space-time discontinuous-Galerkin scheme, the IMEX discretization permits to preserve the symmetry and the positive semi-definiteness of the arising linear system for the pressure that can be solved at the aid of an efficient matrix-free implementation of the conjugate gradient method. We present several convergence results, including nonlinear transport and density currents, up to third order of accuracy in both space and time.
In this paper, we aim to improve the percentage of packets meeting their deadline in discrete-time M/M/1 queues with infrequent monitoring. More specifically, we look into policies that only monitor the system (and subsequently take actions) after a packet arrival. We model the system as an MDP and provide the optimal policy for some special cases. Furthermore, we introduce a heuristic algorithm called "AB-n" for general deadlines. Finally, we provide numerical results demonstrating the desirable performance of "AB-n" policies.
Existing person re-identification methods have achieved remarkable advances in appearance-based identity association across homogeneous cameras, such as ground-ground matching. However, as a more practical scenario, aerial-ground person re-identification (AGPReID) among heterogeneous cameras has received minimal attention. To alleviate the disruption of discriminative identity representation by dramatic view discrepancy as the most significant challenge in AGPReID, the view-decoupled transformer (VDT) is proposed as a simple yet effective framework. Two major components are designed in VDT to decouple view-related and view-unrelated features, namely hierarchical subtractive separation and orthogonal loss, where the former separates these two features inside the VDT, and the latter constrains these two to be independent. In addition, we contribute a large-scale AGPReID dataset called CARGO, consisting of five/eight aerial/ground cameras, 5,000 identities, and 108,563 images. Experiments on two datasets show that VDT is a feasible and effective solution for AGPReID, surpassing the previous method on mAP/Rank1 by up to 5.0%/2.7% on CARGO and 3.7%/5.2% on AG-ReID, keeping the same magnitude of computational complexity. Our project is available at //github.com/LinlyAC/VDT-AGPReID
This study focuses on the development and analysis of a group of high-order implicit-explicit (IMEX) Runge--Kutta (RK) methods that are suitable for discretizing gradient flows with nonlinearity that is Lipschitz continuous. We demonstrate that these IMEX-RK methods can preserve the original energy dissipation property without any restrictions on the time-step size, thanks to a stabilization technique. The stabilization constants are solely dependent on the minimal eigenvalues that result from the Butcher tables of the IMEX-RKs. Furthermore, we establish a simple framework that can determine whether an IMEX-RK scheme is capable of preserving the original energy dissipation property or not. We also present a heuristic convergence analysis based on the truncation errors. This is the first research to prove that a linear high-order single-step scheme can ensure the original energy stability unconditionally for general gradient flows. Additionally, we provide several high-order IMEX-RK schemes that satisfy the established framework. Notably, we discovered a new four-stage third-order IMEX-RK scheme that reduces energy. Finally, we provide numerical examples to demonstrate the stability and accuracy properties of the proposed methods.
This work presents a fully GPU-accelerated algorithm for the polygonal mesh generator known as Polylla. Polylla is a tri-to-polygon mesh generator, which benefits from the half-edge data structure to manage any polygonal shape. The proposed parallel algorithm introduces a novel approach to modify triangulations to get polygonal meshes using the half-edge data structure in parallel on the GPU. By changing the adjacency values of each half-edge, the algorithm accomplish to unlink half-edges that are not used in the new polygonal mesh without the need neither removing nor allocating new memory in the GPU. The experimental results show a speedup, reaching up to $\times 83.2$ when compared to the CPU sequential implementation. Additionally, the speedup is $\times 746.8$ when the cost of copying the data structure from the host device and back is not included.
We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion. The solver is specially devised to optimize curved high-order meshes for high polynomial degrees with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment -- exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-$\text{iLDL}^{\text{T}}(0)$ preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix-vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix-vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.
We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.