亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Musical genre's classification has been a relevant research topic. The association between music and genres is fundamental for the media industry, which manages musical recommendation systems, and for music streaming services, which may appear classified by genres. In this context, this work presents a feature extraction method for the automatic classification of musical genres, based on complex networks and their topological measurements. The proposed method initially converts the musics into sequences of musical notes and then maps the sequences as complex networks. Topological measurements are extracted to characterize the network topology, which composes a feature vector that applies to the classification of musical genres. The method was evaluated in the classification of 10 musical genres by adopting the GTZAN dataset and 8 musical genres by adopting the FMA dataset. The results were compared with methods in the literature. The proposed method outperformed all compared methods by presenting high accuracy and low standard deviation, showing its suitability for the musical genre's classification, which contributes to the media industry in the automatic classification with assertiveness and robustness. The proposed method is implemented in an open source in the Python language and freely available at //github.com/omatheuspimenta/examinner.

相關內容

特征提取是計算機視覺和圖像處理中的一個概念。它指的是使用計算機提取圖像信息,決定每個圖像的點是否屬于一個圖像特征。 特征被檢測后它可以從圖像中被抽取出來。這個過程可能需要許多圖像處理的計算機。其結果被稱為特征描述或者特征向量。

This paper proposes a new RWO-Sampling (Random Walk Over-Sampling) based on graphs for imbalanced datasets. In this method, two schemes based on under-sampling and over-sampling methods are introduced to keep the proximity information robust to noises and outliers. After constructing the first graph on minority class, RWO-Sampling will be implemented on selected samples, and the rest will remain unchanged. The second graph is constructed for the majority class, and the samples in a low-density area (outliers) are removed. Finally, in the proposed method, samples of the majority class in a high-density area are selected, and the rest are eliminated. Furthermore, utilizing RWO-sampling, the boundary of minority class is increased though the outliers are not raised. This method is tested, and the number of evaluation measures is compared to previous methods on nine continuous attribute datasets with different over-sampling rates and one data set for the diagnosis of COVID-19 disease. The experimental results indicated the high efficiency and flexibility of the proposed method for the classification of imbalanced data

Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks. By using additional prompts to fine-tune PLMs, we can further stimulate the rich knowledge distributed in PLMs to better serve downstream task. Prompt tuning has achieved promising results on some few-class classification tasks such as sentiment classification and natural language inference. However, manually designing lots of language prompts is cumbersome and fallible. For those auto-generated prompts, it is also expensive and time-consuming to verify their effectiveness in non-few-shot scenarios. Hence, it is challenging for prompt tuning to address many-class classification tasks. To this end, we propose prompt tuning with rules (PTR) for many-class text classification, and apply logic rules to construct prompts with several sub-prompts. In this way, PTR is able to encode prior knowledge of each class into prompt tuning. We conduct experiments on relation classification, a typical many-class classification task, and the results on benchmarks show that PTR can significantly and consistently outperform existing state-of-the-art baselines. This indicates that PTR is a promising approach to take advantage of PLMs for those complicated classification tasks.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

Text classification tends to be difficult when the data is deficient or when it is required to adapt to unseen classes. In such challenging scenarios, recent studies have often used meta-learning to simulate the few-shot task, thus negating explicit common linguistic features across tasks. Deep language representations have proven to be very effective forms of unsupervised pretraining, yielding contextualized features that capture linguistic properties and benefit downstream natural language understanding tasks. However, the effect of pretrained language representation for few-shot learning on text classification tasks is still not well understood. In this study, we design a few-shot learning model with pretrained language representations and report the empirical results. We show that our approach is not only simple but also produces state-of-the-art performance on a well-studied sentiment classification dataset. It can thus be further suggested that pretraining could be a promising solution for few shot learning of many other NLP tasks. The code and the dataset to replicate the experiments are made available at //github.com/zxlzr/FewShotNLP.

Sufficient supervised information is crucial for any machine learning models to boost performance. However, labeling data is expensive and sometimes difficult to obtain. Active learning is an approach to acquire annotations for data from a human oracle by selecting informative samples with a high probability to enhance performance. In recent emerging studies, a generative adversarial network (GAN) has been integrated with active learning to generate good candidates to be presented to the oracle. In this paper, we propose a novel model that is able to obtain labels for data in a cheaper manner without the need to query an oracle. In the model, a novel reward for each sample is devised to measure the degree of uncertainty, which is obtained from a classifier trained with existing labeled data. This reward is used to guide a conditional GAN to generate informative samples with a higher probability for a certain label. With extensive evaluations, we have confirmed the effectiveness of the model, showing that the generated samples are capable of improving the classification performance in popular image classification tasks.

In this paper, we propose a span based model combined with syntactic information for n-ary open information extraction. The advantage of span model is that it can leverage span level features, which is difficult in token based BIO tagging methods. We also improve the previous bootstrap method to construct training corpus. Experiments show that our model outperforms previous open information extraction systems. Our code and data are publicly available at //github.com/zhanjunlang/Span_OIE

An attributed network enriches a pure network by encoding a part of widely accessible node auxiliary information into node attributes. Learning vector representation of each node a.k.a. Network Embedding (NE) for such an attributed network by considering both structure and attribute information has recently attracted considerable attention, since each node embedding is simply a unified low-dimension vector representation that makes downstream tasks e.g. link prediction more efficient and much easier to realize. Most of previous works have not considered the significant case of a network with incomplete structure information, which however, would often appear in our real-world scenarios e.g. the abnormal users in a social network who intentionally hide their friendships. And different networks obviously have different levels of incomplete structure information, which imposes more challenges to balance two sources of information. To tackle that, we propose a robust NE method called Attributed Biased Random Walks (ABRW) to employ attribute information for compensating incomplete structure information by using transition matrices. The experiments of link prediction and node classification tasks on real-world datasets confirm the robustness and effectiveness of our method to the different levels of the incomplete structure information.

Many applications require an understanding of an image that goes beyond the simple detection and classification of its objects. In particular, a great deal of semantic information is carried in the relationships between objects. We have previously shown that the combination of a visual model and a statistical semantic prior model can improve on the task of mapping images to their associated scene description. In this paper, we review the model and compare it to a novel conditional multi-way model for visual relationship detection, which does not include an explicitly trained visual prior model. We also discuss potential relationships between the proposed methods and memory models of the human brain.

Information extraction and user intention identification are central topics in modern query understanding and recommendation systems. In this paper, we propose DeepProbe, a generic information-directed interaction framework which is built around an attention-based sequence to sequence (seq2seq) recurrent neural network. DeepProbe can rephrase, evaluate, and even actively ask questions, leveraging the generative ability and likelihood estimation made possible by seq2seq models. DeepProbe makes decisions based on a derived uncertainty (entropy) measure conditioned on user inputs, possibly with multiple rounds of interactions. Three applications, namely a rewritter, a relevance scorer and a chatbot for ad recommendation, were built around DeepProbe, with the first two serving as precursory building blocks for the third. We first use the seq2seq model in DeepProbe to rewrite a user query into one of standard query form, which is submitted to an ordinary recommendation system. Secondly, we evaluate DeepProbe's seq2seq model-based relevance scoring. Finally, we build a chatbot prototype capable of making active user interactions, which can ask questions that maximize information gain, allowing for a more efficient user intention idenfication process. We evaluate first two applications by 1) comparing with baselines by BLEU and AUC, and 2) human judge evaluation. Both demonstrate significant improvements compared with current state-of-the-art systems, proving their values as useful tools on their own, and at the same time laying a good foundation for the ongoing chatbot application.

Recently, substantial research effort has focused on how to apply CNNs or RNNs to better extract temporal patterns from videos, so as to improve the accuracy of video classification. In this paper, however, we show that temporal information, especially longer-term patterns, may not be necessary to achieve competitive results on common video classification datasets. We investigate the potential of a purely attention based local feature integration. Accounting for the characteristics of such features in video classification, we propose a local feature integration framework based on attention clusters, and introduce a shifting operation to capture more diverse signals. We carefully analyze and compare the effect of different attention mechanisms, cluster sizes, and the use of the shifting operation, and also investigate the combination of attention clusters for multimodal integration. We demonstrate the effectiveness of our framework on three real-world video classification datasets. Our model achieves competitive results across all of these. In particular, on the large-scale Kinetics dataset, our framework obtains an excellent single model accuracy of 79.4% in terms of the top-1 and 94.0% in terms of the top-5 accuracy on the validation set. The attention clusters are the backbone of our winner solution at ActivityNet Kinetics Challenge 2017. Code and models will be released soon.

北京阿比特科技有限公司