亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rug pulls pose a grave threat to the cryptocurrency ecosystem, leading to substantial financial loss and undermining trust in decentralized finance (DeFi) projects. With the emergence of new rug pull patterns, research on rug pull is out of state. To fill this gap, we first conducted an extensive analysis of the literature review, encompassing both scholarly and industry sources. By examining existing academic articles and industrial discussions on rug pull projects, we present a taxonomy inclusive of 34 root causes, introducing six new categories inspired by industry sources: burn, hidden owner, ownership transfer, unverified contract, external call, and fake LP lock. Based on the developed taxonomy, we evaluated current rug pull datasets and explored the effectiveness and limitations of existing detection mechanisms. Our evaluation indicates that the existing datasets, which document 2,448 instances, address only 7 of the 34 root causes, amounting to a mere 20% coverage. It indicates that existing open-source datasets need to be improved to study rug pulls. In response, we have constructed a more comprehensive dataset containing 2,360 instances, expanding the coverage to 54% with the best effort. In addition, the examination of 14 detection tools showed that they can identify 25 of the 34 root causes, achieving a coverage of 73.5%. There are nine root causes (Fake LP Lock, Hidden Fee, and Destroy Token, Fake Money Transfer, Ownership Transfer, Liquidity Pool Block, Freeze Account, Wash-Trading, Hedge) that the existing tools cannot cover. Our work indicates that there is a significant gap between current research and detection tools, and the actual situation of rug pulls.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 潛在成因 · Extensibility · HTTPS · Better ·
2024 年 5 月 6 日

Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at //github.com/fesvhtr/CUVA.

To address the increasing complexity and frequency of cybersecurity incidents emphasized by the recent cybersecurity threat reports with over 10 billion instances, cyber threat intelligence (CTI) plays a critical role in the modern cybersecurity landscape by offering the insights required to understand and combat the constantly evolving nature of cyber threats. Inspired by the powerful capability of large language models (LLMs) in handling complex tasks, in this paper, we introduce a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities in LLMs for Security Events (SEvenLLM). Specifically, we create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites to overcome the lack of effective data for information extraction. Then, we design a pipeline to auto-select tasks from the tasks pool and convert the raw text into supervised corpora comprised of question and response. The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective (27 well-designed tasks) for augmenting the analysis of cybersecurity events. Extensive experiments in our curated benchmark (SEvenLLM-bench) demonstrate that SEvenLLM performs more sophisticated threat analysis and fortifies defenses against the evolving landscape of cyber threats.

Smart contracts are prone to various vulnerabilities, leading to substantial financial losses over time. Current analysis tools mainly target vulnerabilities with fixed control or data-flow patterns, such as re-entrancy and integer overflow. However, a recent study on Web3 security bugs revealed that about 80% of these bugs cannot be audited by existing tools due to the lack of domain-specific property description and checking. Given recent advances in Large Language Models (LLMs), it is worth exploring how Generative Pre-training Transformer (GPT) could aid in detecting logicc vulnerabilities. In this paper, we propose GPTScan, the first tool combining GPT with static analysis for smart contract logic vulnerability detection. Instead of relying solely on GPT to identify vulnerabilities, which can lead to high false positives and is limited by GPT's pre-trained knowledge, we utilize GPT as a versatile code understanding tool. By breaking down each logic vulnerability type into scenarios and properties, GPTScan matches candidate vulnerabilities with GPT. To enhance accuracy, GPTScan further instructs GPT to intelligently recognize key variables and statements, which are then validated by static confirmation. Evaluation on diverse datasets with around 400 contract projects and 3K Solidity files shows that GPTScan achieves high precision (over 90%) for token contracts and acceptable precision (57.14%) for large projects like Web3Bugs. It effectively detects ground-truth logic vulnerabilities with a recall of over 70%, including 9 new vulnerabilities missed by human auditors. GPTScan is fast and cost-effective, taking an average of 14.39 seconds and 0.01 USD to scan per thousand lines of Solidity code. Moreover, static confirmation helps GPTScan reduce two-thirds of false positives.

With globalization's rise, economic interdependence's impacts have become a prominent factor affecting personal lives, as well as national and international dynamics. This study examines RT's public diplomacy efforts on its non-Russian Facebook accounts over the past five years to identify the prominence of economic topics across language accounts. Computational analysis, including word embeddings and statistical methods, investigates how offline economic indicators, like currency values and oil prices, correspond to RT's online economic content changes. The results demonstrate that RT uses message reinforcement associated economic topics as an audience targeting strategy and differentiates their use with changing currency and oil values.

We warn against a common but incomplete understanding of empirical research in machine learning (ML) that leads to non-replicable results, makes findings unreliable, and threatens to undermine progress in the field. To overcome this alarming situation, we call for more awareness of the plurality of ways of gaining knowledge experimentally but also of some epistemic limitations. In particular, we argue most current empirical ML research is fashioned as confirmatory research while it should rather be considered exploratory.

Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司