亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While awareness has been recently raised on Ethereum mempool security, the current state of the art lacks a comprehensive understanding of the subject: The only known attack, DETER (CCS'21), is manually discovered, and it remains an open problem whether attacks other than DETER exist that disable the mempool at an asymmetrically low cost. In this paper, we propose automatic exploit generation techniques to discover new mempool-DoS attack. By employing model checking, we discover a new attack pattern beyond DETER. By further leveraging attack synthesis techniques, we generate exploits from the patterns to adaptively bypass defenses adopted in real Ethereum clients. Our evaluation result shows that while the recent Ethereum clients (e.g., Geth V1.10.14 and OpenEthereum V3.3.5) have mitigated the existing DETER attacks, they are vulnerable to the newly discovered attacks that achieve high success rates (88% - 96%) and low costs (as low as zero Gas/Ether).

相關內容

In human interactions, emotion recognition is crucial. For this reason, the topic of computer-vision approaches for automatic emotion recognition is currently being extensively researched. Processing multi-channel electroencephalogram (EEG) information is one of the most researched methods for automatic emotion recognition. This paper presents a new model for an affective computing-driven Quality of Experience (QoE) prediction. In order to validate the proposed model, a publicly available dataset is used. The dataset contains EEG, ECG, and respiratory data and is focused on a multimedia QoE assessment context. The EEG data are retained on which the differential entropy and the power spectral density are calculated with an observation window of three seconds. These two features were extracted to train several deep-learning models to investigate the possibility of predicting QoE with five different factors. The performance of these models is compared, and the best model is optimized to improve the results. The best results were obtained with an LSTM-based model, presenting an F1-score from 68% to 78%. An analysis of the model and its features shows that the Delta frequency band is the least necessary, that two electrodes have a higher importance, and that two other electrodes have a very low impact on the model's performances.

Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we embark on a comprehensive exploration of adversarial machine learning models, shedding light on their intrinsic complexity and interpretability. Our investigation reveals intriguing links between machine learning model complexity and Einstein's theory of special relativity, all through the lens of entanglement. While our work does not primarily center on quantum entanglement, we instead define the entanglement correlations we have discovered to be computational, and demonstrate that distant feature samples can be entangled, strongly resembling entanglement correlation in the quantum realm. This revelation bestows fresh insights for understanding the phenomenon of emergent adversarial examples in modern machine learning, potentially paving the way for more robust and interpretable models in this rapidly evolving field.

The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol. It might over-emphasize the matching with the ground-truth items or utterances generated by human annotators, while neglecting the interactive nature of being a capable CRS. To overcome the limitation, we further propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators. Our evaluation approach can simulate various interaction scenarios between users and systems. Through the experiments on two publicly available CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and easy-to-use evaluation framework for future research endeavors. The codes and data are publicly available at //github.com/RUCAIBox/iEvaLM-CRS.

Continuous monitoring and patient acuity assessments are key aspects of Intensive Care Unit (ICU) practice, but both are limited by time constraints imposed on healthcare providers. Moreover, anticipating clinical trajectories remains imprecise. The objectives of this study are to (1) develop an electronic phenotype of acuity using automated variable retrieval within the electronic health records and (2) describe transitions between acuity states that illustrate the clinical trajectories of ICU patients. We gathered two single-center, longitudinal electronic health record datasets for 51,372 adult ICU patients admitted to the University of Florida Health (UFH) Gainesville (GNV) and Jacksonville (JAX). We developed algorithms to quantify acuity status at four-hour intervals for each ICU admission and identify acuity phenotypes using continuous acuity status and k-means clustering approach. 51,073 admissions for 38,749 patients in the UFH GNV dataset and 22,219 admissions for 12,623 patients in the UFH JAX dataset had at least one ICU stay lasting more than four hours. There were three phenotypes: persistently stable, persistently unstable, and transitioning from unstable to stable. For stable patients, approximately 0.7%-1.7% would transition to unstable, 0.02%-0.1% would expire, 1.2%-3.4% would be discharged, and the remaining 96%-97% would remain stable in the ICU every four hours. For unstable patients, approximately 6%-10% would transition to stable, 0.4%-0.5% would expire, and the remaining 89%-93% would remain unstable in the ICU in the next four hours. We developed phenotyping algorithms for patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding escalation of care and patient values.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司