亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we present deep learning implementations of two popular theoretical constrained optimization algorithms in infinite dimensional Hilbert spaces, namely, the penalty and the augmented Lagrangian methods. We test these algorithms on some toy problems originating in either calculus of variations or physics. We demonstrate that both methods are able to produce decent approximations for the test problems and are comparable in terms of different errors produced. Leveraging the common occurrence of the Lagrange multiplier update rule being computationally less expensive than solving subproblems in the penalty method, we achieve significant speedups in cases when the output of the constraint function is itself a function.

相關內容

In this work, we analyze a sublinear-time algorithm for selecting a few rows and columns of a matrix for low-rank approximation purposes. The algorithm is based on an initial uniformly random selection of rows and columns, followed by a refinement of this choice using a strong rank-revealing QR factorization. We prove bounds on the error of the corresponding low-rank approximation (more precisely, the CUR approximation error) when the matrix is a perturbation of a low-rank matrix that can be factorized into the product of matrices with suitable incoherence and/or sparsity assumptions.

In this work, we present a simple and unified analysis of the Johnson-Lindenstrauss (JL) lemma, a cornerstone in the field of dimensionality reduction critical for managing high-dimensional data. Our approach not only simplifies the understanding but also unifies various constructions under the JL framework, including spherical, binary-coin, sparse JL, Gaussian and sub-Gaussian models. This simplification and unification make significant strides in preserving the intrinsic geometry of data, essential across diverse applications from streaming algorithms to reinforcement learning. Notably, we deliver the first rigorous proof of the spherical construction's effectiveness and provide a general class of sub-Gaussian constructions within this simplified framework. At the heart of our contribution is an innovative extension of the Hanson-Wright inequality to high dimensions, complete with explicit constants, marking a substantial leap in the literature. By employing simple yet powerful probabilistic tools and analytical techniques, such as an enhanced diagonalization process, our analysis not only solidifies the JL lemma's theoretical foundation but also extends its practical reach, showcasing its adaptability and importance in contemporary computational algorithms.

Hybrid modeling integrates machine learning with scientific knowledge with the goal of enhancing interpretability, generalization, and adherence to natural laws. Nevertheless, equifinality and regularization biases pose challenges in hybrid modeling to achieve these purposes. This paper introduces a novel approach to estimating hybrid models via a causal inference framework, specifically employing Double Machine Learning (DML) to estimate causal effects. We showcase its use for the Earth sciences on two problems related to carbon dioxide fluxes. In the $Q_{10}$ model, we demonstrate that DML-based hybrid modeling is superior in estimating causal parameters over end-to-end deep neural network (DNN) approaches, proving efficiency, robustness to bias from regularization methods, and circumventing equifinality. Our approach, applied to carbon flux partitioning, exhibits flexibility in accommodating heterogeneous causal effects. The study emphasizes the necessity of explicitly defining causal graphs and relationships, advocating for this as a general best practice. We encourage the continued exploration of causality in hybrid models for more interpretable and trustworthy results in knowledge-guided machine learning.

In this study, we systematically evaluate the impact of common design choices in Mixture of Experts (MoEs) on validation performance, uncovering distinct influences at token and sequence levels. We also present empirical evidence showing comparable performance between a learned router and a frozen, randomly initialized router, suggesting that learned routing may not be essential. Our study further reveals that Sequence-level routing can result in topic-specific weak expert specialization, in contrast to syntax specialization observed with Token-level routing.

In this work, we address parametric non-stationary fluid dynamics problems within a model order reduction setting based on domain decomposition. Starting from the optimisation-based domain decomposition approach, we derive an optimal control problem, for which we present a convergence analysis in the case of non-stationary incompressible Navier-Stokes equations. We discretize the problem with the finite element method and we compare different model order reduction techniques: POD-Galerkin and a non-intrusive neural network procedure. We show that the classical POD-Galerkin is more robust and accurate also in transient areas, while the neural network can obtain simulations very quickly though being less precise in the presence of discontinuities in time or parameter domain. We test the proposed methodologies on two fluid dynamics benchmarks with physical parameters and time dependency: the non-stationary backward-facing step and lid-driven cavity flow.

Motivated by a recent work on a preconditioned MINRES for flipped linear systems in imaging, in this note we extend the scope of that research for including more precise boundary conditions such as reflective and anti-reflective ones. We prove spectral results for the matrix-sequences associated to the original problem, which justify the use of the MINRES in the current setting. The theoretical spectral analysis is supported by a wide variety of numerical experiments, concerning the visualization of the spectra of the original matrices in various ways. We also report numerical tests regarding the convergence speed and regularization features of the associated GMRES and MINRES methods. Conclusions and open problems end the present study.

In this paper, we apply quasi-Monte Carlo (QMC) methods with an initial preintegration step to estimate cumulative distribution functions and probability density functions in uncertainty quantification (UQ). The distribution and density functions correspond to a quantity of interest involving the solution to an elliptic partial differential equation (PDE) with a lognormally distributed coefficient and a normally distributed source term. There is extensive previous work on using QMC to compute expected values in UQ, which have proven very successful in tackling a range of different PDE problems. However, the use of QMC for density estimation applied to UQ problems will be explored here for the first time. Density estimation presents a more difficult challenge compared to computing the expected value due to discontinuities present in the integral formulations of both the distribution and density. Our strategy is to use preintegration to eliminate the discontinuity by integrating out a carefully selected random parameter, so that QMC can be used to approximate the remaining integral. First, we establish regularity results for the PDE quantity of interest that are required for smoothing by preintegration to be effective. We then show that an $N$-point lattice rule can be constructed for the integrands corresponding to the distribution and density, such that after preintegration the QMC error is of order $\mathcal{O}(N^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$. This is the same rate achieved for computing the expected value of the quantity of interest. Numerical results are presented to reaffirm our theory.

Literature is full of inference techniques developed to estimate the parameters of stochastic dynamical systems driven by the well-known Brownian noise. Such diffusion models are often inappropriate models to properly describe the dynamics reflected in many real-world data which are dominated by jump discontinuities of various sizes and frequencies. To account for the presence of jumps, jump-diffusion models are introduced and some inference techniques are developed. Jump-diffusion models are also inadequate models since they fail to reflect the frequent occurrence as well as the continuous spectrum of natural jumps. It is, therefore, crucial to depart from the classical stochastic systems like diffusion and jump-diffusion models and resort to stochastic systems where the regime of stochasticity is governed by the stochastic fluctuations of L\'evy type. Reconstruction of L\'evy-driven dynamical systems, however, has been a major challenge. The literature on the reconstruction of L\'evy-driven systems is rather poor: there are few reconstruction algorithms developed which suffer from one or several problems such as being data-hungry, failing to provide a full reconstruction of noise parameters, tackling only some specific systems, failing to cope with multivariate data in practice, lacking proper validation mechanisms, and many more. This letter introduces a maximum likelihood estimation procedure which grants a full reconstruction of the system, requires less data, and its implementation for multivariate data is quite straightforward. To the best of our knowledge this contribution is the first to tackle all the mentioned shortcomings. We apply our algorithm to simulated data as well as an ice-core dataset spanning the last glaciation. In particular, we find new insights about the dynamics of the climate in the curse of the last glaciation which was not found in previous studies.

We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司