$\newcommand{\eps}{\varepsilon}$We present an auction algorithm using multiplicative instead of constant weight updates to compute a $(1-\eps)$-approximate maximum weight matching (MWM) in a bipartite graph with $n$ vertices and $m$ edges in time $O(m\eps^{-1}\log(\eps^{-1}))$, matching the running time of the linear-time approximation algorithm of Duan and Pettie [JACM '14]. Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a $(1-\eps)$-approximate maximum weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided vertex insertions (with incident edges sorted by weight) to the other side. The total time time used is $O(m\eps^{-1}\log(\eps^{-1}))$, where $m$ is the sum of the number of initially existing and inserted edges.
Discrete optimization belongs to the set of $\mathcal{NP}$-hard problems, spanning fields such as mixed-integer programming and combinatorial optimization. A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms, which reach optimal solutions by iteratively adding inequalities known as \textit{cuts} to refine a feasible set. Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability. In this work, we propose a method for accelerating cutting-plane algorithms via reinforcement learning. Our approach uses learned policies as surrogates for $\mathcal{NP}$-hard elements of the cut generating procedure in a way that (i) accelerates convergence, and (ii) retains guarantees of optimality. We apply our method on two types of problems where cutting-plane algorithms are commonly used: stochastic optimization, and mixed-integer quadratic programming. We observe the benefits of our method when applied to Benders decomposition (stochastic optimization) and iterative loss approximation (quadratic programming), achieving up to $45\%$ faster average convergence when compared to modern alternative algorithms.
The aim of this work is to develop a fast algorithm for approximating the matrix function $f(A)$ of a square matrix $A$ that is symmetric and has hierarchically semiseparable (HSS) structure. Appearing in a wide variety of applications, often in the context of discretized (fractional) differential and integral operators, HSS matrices have a number of attractive properties facilitating the development of fast algorithms. In this work, we use an unconventional telescopic decomposition of $A$, inspired by recent work of Levitt and Martinsson on approximating an HSS matrix from matrix-vector products with a few random vectors. This telescopic decomposition allows us to approximate $f(A)$ by recursively performing low-rank updates with rational Krylov subspaces while keeping the size of the matrices involved in the rational Krylov subspaces small. In particular, no large-scale linear system needs to be solved, which yields favorable complexity estimates and reduced execution times compared to existing methods, including an existing divide-and-conquer strategy. The advantages of our newly proposed algorithms are demonstrated for a number of examples from the literature, featuring the exponential, the inverse square root, and the sign function of a matrix. Even for matrix inversion, our algorithm exhibits superior performance, even if not specifically designed for this task.
The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.
We present a distributed conjugate gradient method for distributed optimization problems, where each agent computes an optimal solution of the problem locally without any central computation or coordination, while communicating with its immediate, one-hop neighbors over a communication network. Each agent updates its local problem variable using an estimate of the average conjugate direction across the network, computed via a dynamic consensus approach. Our algorithm enables the agents to use uncoordinated step-sizes. We prove convergence of the local variable of each agent to the optimal solution of the aggregate optimization problem, without requiring decreasing step-sizes. In addition, we demonstrate the efficacy of our algorithm in distributed state estimation problems, and its robust counterparts, where we show its performance compared to existing distributed first-order optimization methods.
We present a stochastic method for efficiently computing the solution of time-fractional partial differential equations (fPDEs) that model anomalous diffusion problems of the subdiffusive type. After discretizing the fPDE in space, the ensuing system of fractional linear equations is solved resorting to a Monte Carlo evaluation of the corresponding Mittag-Leffler matrix function. This is accomplished through the approximation of the expected value of a suitable multiplicative functional of a stochastic process, which consists of a Markov chain whose sojourn times in every state are Mittag-Leffler distributed. The resulting algorithm is able to calculate the solution at conveniently chosen points in the domain with high efficiency. In addition, we present how to generalize this algorithm in order to compute the complete solution. For several large-scale numerical problems, our method showed remarkable performance in both shared-memory and distributed-memory systems, achieving nearly perfect scalability up to 16,384 CPU cores.
We study the problem of federated contextual combinatorial cascading bandits, where $|\mathcal{U}|$ agents collaborate under the coordination of a central server to provide tailored recommendations to the $|\mathcal{U}|$ corresponding users. Existing works consider either a synchronous framework, necessitating full agent participation and global synchronization, or assume user homogeneity with identical behaviors. We overcome these limitations by considering (1) federated agents operating in an asynchronous communication paradigm, where no mandatory synchronization is required and all agents communicate independently with the server, (2) heterogeneous user behaviors, where users can be stratified into $J \le |\mathcal{U}|$ latent user clusters, each exhibiting distinct preferences. For this setting, we propose a UCB-type algorithm with delicate communication protocols. Through theoretical analysis, we give sub-linear regret bounds on par with those achieved in the synchronous framework, while incurring only logarithmic communication costs. Empirical evaluation on synthetic and real-world datasets validates our algorithm's superior performance in terms of regrets and communication costs.
For approximate inference in the generalized quadratic equations model, many state-of-the-art algorithms lack any prior knowledge of the target signal structure, exhibits slow convergence, and can not handle any analytic prior knowledge of the target signal structure. So, this paper proposes a new algorithm, Quadratic Message passing (QMP). QMP has a complexity as low as $O(N^{3})$. The SE derived for QMP can capture precisely the per-iteration behavior of the simulated algorithm. Simulation results confirm QMP outperforms many state-of-the-art algorithms.
The recently proposed soft finite element method (SoftFEM) reduces the stiffness (condition numbers), consequently improving the overall approximation accuracy. The method subtracts a least-square term that penalizes the gradient jumps across mesh interfaces from the FEM stiffness bilinear form while maintaining the system's coercivity. Herein, we present two generalizations for SoftFEM that aim to improve the approximation accuracy and further reduce the discrete systems' stiffness. Firstly and most naturally, we generalize SoftFEM by adding a least-square term to the mass bilinear form. Superconvergent results of rates $h^6$ and $h^8$ for eigenvalues are established for linear uniform elements; $h^8$ is the highest order of convergence known in the literature. Secondly, we generalize SoftFEM by applying the blended Gaussian-type quadratures. We demonstrate further reductions in stiffness compared to traditional FEM and SoftFEM. The coercivity and analysis of the optimal error convergences follow the work of SoftFEM. Thus, this paper focuses on the numerical study of these generalizations. For linear and uniform elements, analytical eigenpairs, exact eigenvalue errors, and superconvergent error analysis are established. Various numerical examples demonstrate the potential of generalized SoftFEMs for spectral approximation, particularly in high-frequency regimes.
We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the output of the algorithm and the sensitive variable are continuous. Most of prior work deals with discrete sensitive variables, meaning that the biases are measured for subgroups of persons defined by a label, leaving out important algorithmic bias cases, where the sensitive variable is continuous. Typical examples are unfair decisions made with respect to the age or the financial status. In our work, we then propose a bias mitigation strategy for continuous sensitive variables, based on the notion of endogeneity which comes from the field of econometrics. In addition to solve this new problem, our bias mitigation strategy is a weakly supervised learning method which requires that a small portion of the data can be measured in a fair manner. It is model agnostic, in the sense that it does not make any hypothesis on the prediction model. It also makes use of a reasonably large amount of input observations and their corresponding predictions. Only a small fraction of the true output predictions should be known. This therefore limits the need for expert interventions. Results obtained on synthetic data show the effectiveness of our approach for examples as close as possible to real-life applications in econometrics.
We present a parallel algorithm for the $(1-\epsilon)$-approximate maximum flow problem in capacitated, undirected graphs with $n$ vertices and $m$ edges, achieving $O(\epsilon^{-3}\text{polylog} n)$ depth and $O(m \epsilon^{-3} \text{polylog} n)$ work in the PRAM model. Although near-linear time sequential algorithms for this problem have been known for almost a decade, no parallel algorithms that simultaneously achieved polylogarithmic depth and near-linear work were known. At the heart of our result is a polylogarithmic depth, near-linear work recursive algorithm for computing congestion approximators. Our algorithm involves a recursive step to obtain a low-quality congestion approximator followed by a "boosting" step to improve its quality which prevents a multiplicative blow-up in error. Similar to Peng [SODA'16], our boosting step builds upon the hierarchical decomposition scheme of R\"acke, Shah, and T\"aubig [SODA'14]. A direct implementation of this approach, however, leads only to an algorithm with $n^{o(1)}$ depth and $m^{1+o(1)}$ work. To get around this, we introduce a new hierarchical decomposition scheme, in which we only need to solve maximum flows on subgraphs obtained by contracting vertices, as opposed to vertex-induced subgraphs used in R\"acke, Shah, and T\"aubig [SODA'14]. In particular, we are able to directly extract congestion approximators for the subgraphs from a congestion approximator for the entire graph, thereby avoiding additional recursion on those subgraphs. Along the way, we also develop a parallel flow-decomposition algorithm that is crucial to achieving polylogarithmic depth and may be of independent interest.