亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finding relevant and high-quality datasets to train machine learning models is a major bottleneck for practitioners. Furthermore, to address ambitious real-world use-cases there is usually the requirement that the data come labelled with high-quality annotations that can facilitate the training of a supervised model. Manually labelling data with high-quality labels is generally a time-consuming and challenging task and often this turns out to be the bottleneck in a machine learning project. Weak Supervised Learning (WSL) approaches have been developed to alleviate the annotation burden by offering an automatic way of assigning approximate labels (pseudo-labels) to unlabelled data based on heuristics, distant supervision and knowledge bases. We apply probabilistic generative latent variable models (PLVMs), trained on heuristic labelling representations of the original dataset, as an accurate, fast and cost-effective way to generate pseudo-labels. We show that the PLVMs achieve state-of-the-art performance across four datasets. For example, they achieve 22% points higher F1 score than Snorkel in the class-imbalanced Spouse dataset. PLVMs are plug-and-playable and are a drop-in replacement to existing WSL frameworks (e.g. Snorkel) or they can be used as benchmark models for more complicated algorithms, giving practitioners a compelling accuracy boost.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · Weight · · Networking ·
2023 年 11 月 17 日

Timestamped relational datasets consisting of records between pairs of entities are ubiquitous in data and network science. For applications like peer-to-peer communication, email, social network interactions, and computer network security, it makes sense to organize these records into groups based on how and when they are occurring. Weighted line graphs offer a natural way to model how records are related in such datasets but for large real-world graph topologies the complexity of building and utilizing the line graph is prohibitive. We present an algorithm to cluster the edges of a dynamic graph via the associated line graph without forming it explicitly. We outline a novel hierarchical dynamic graph edge clustering approach that efficiently breaks massive relational datasets into small sets of edges containing events at various timescales. This is in stark contrast to traditional graph clustering algorithms that prioritize highly connected community structures. Our approach relies on constructing a sufficient subgraph of a weighted line graph and applying a hierarchical agglomerative clustering. This work draws particular inspiration from HDBSCAN. We present a parallel algorithm and show that it is able to break billion-scale dynamic graphs into small sets that correlate in topology and time. The entire clustering process for a graph with $O(10 \text{ billion})$ edges takes just a few minutes of run time on 256 nodes of a distributed compute environment. We argue how the output of the edge clustering is useful for a multitude of data visualization and powerful machine learning tasks, both involving the original massive dynamic graph data and/or the non-relational metadata. Finally, we demonstrate its use on a real-world large-scale directed dynamic graph and describe how it can be extended to dynamic hypergraphs and graphs with unstructured data living on vertices and edges.

We consider the problem of tabular infinite horizon concave utility reinforcement learning (CURL) with convex constraints. For this, we propose a model-based learning algorithm that also achieves zero constraint violations. Assuming that the concave objective and the convex constraints have a solution interior to the set of feasible occupation measures, we solve a tighter optimization problem to ensure that the constraints are never violated despite the imprecise model knowledge and model stochasticity. We use Bellman error-based analysis for tabular infinite-horizon setups which allows analyzing stochastic policies. Combining the Bellman error-based analysis and tighter optimization equation, for $T$ interactions with the environment, we obtain a high-probability regret guarantee for objective which grows as $\Tilde{O}(1/\sqrt{T})$, excluding other factors. The proposed method can be applied for optimistic algorithms to obtain high-probability regret bounds and also be used for posterior sampling algorithms to obtain a loose Bayesian regret bounds but with significant improvement in computational complexity.

Decades of research indicate that emotion recognition is more effective when drawing information from multiple modalities. But what if some modalities are sometimes missing? To address this problem, we propose a novel Transformer-based architecture for recognizing valence and arousal in a time-continuous manner even with missing input modalities. We use a coupling of cross-attention and self-attention mechanisms to emphasize relationships between modalities during time and enhance the learning process on weak salient inputs. Experimental results on the Ulm-TSST dataset show that our model exhibits an improvement of the concordance correlation coefficient evaluation of 37% when predicting arousal values and 30% when predicting valence values, compared to a late-fusion baseline approach.

Offline reinforcement learning suffers from the out-of-distribution issue and extrapolation error. Most policy constraint methods regularize the density of the trained policy towards the behavior policy, which is too restrictive in most cases. We propose Supported Trust Region optimization (STR) which performs trust region policy optimization with the policy constrained within the support of the behavior policy, enjoying the less restrictive support constraint. We show that, when assuming no approximation and sampling error, STR guarantees strict policy improvement until convergence to the optimal support-constrained policy in the dataset. Further with both errors incorporated, STR still guarantees safe policy improvement for each step. Empirical results validate the theory of STR and demonstrate its state-of-the-art performance on MuJoCo locomotion domains and much more challenging AntMaze domains.

We proposed a new Convolution Neural Network implementation optimized for sparse 3D data inference. This implementation uses NanoVDB as the data structure to store the sparse tensor. It leaves a relatively small memory footprint while maintaining high performance. We demonstrate that this architecture is around 20 times faster than the state-of-the-art dense CNN model on a high-resolution 3D object classification network.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司