亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training a machine learning model with federated edge learning (FEEL) is typically time-consuming due to the constrained computation power of edge devices and limited wireless resources in edge networks. In this paper, the training time minimization problem is investigated in a quantized FEEL system, where the heterogeneous edge devices send quantized gradients to the edge server via orthogonal channels. In particular, a stochastic quantization scheme is adopted for compression of uploaded gradients, which can reduce the burden of per-round communication but may come at the cost of increasing number of communication rounds. The training time is modeled by taking into account the communication time, computation time and the number of communication rounds. Based on the proposed training time model, the intrinsic trade-off between the number of communication rounds and per-round latency is characterized. Specifically, we analyze the convergence behavior of the quantized FEEL in terms of the optimality gap. Further, a joint data-and-model-driven fitting method is proposed to obtain the exact optimality gap, based on which the closed-form expressions for the number of communication rounds and the total training time are obtained. Constrained by total bandwidth, the training time minimization problem is formulated as a joint quantization level and bandwidth allocation optimization problem. To this end, an algorithm based on alternating optimization is proposed, which alternatively solves the subproblem of quantization optimization via successive convex approximation and the subproblem of bandwidth allocation via bisection search. With different learning tasks and models, the validation of our analysis and the near-optimal performance of the proposed optimization algorithm are demonstrated by the experimental results.

相關內容

We study a new two-time-scale stochastic gradient method for solving optimization problems, where the gradients are computed with the aid of an auxiliary variable under samples generated by time-varying Markov random processes parameterized by the underlying optimization variable. These time-varying samples make gradient directions in our update biased and dependent, which can potentially lead to the divergence of the iterates. In our two-time-scale approach, one scale is to estimate the true gradient from these samples, which is then used to update the estimate of the optimal solution. While these two iterates are implemented simultaneously, the former is updated "faster" (using bigger step sizes) than the latter (using smaller step sizes). Our first contribution is to characterize the finite-time complexity of the proposed two-time-scale stochastic gradient method. In particular, we provide explicit formulas for the convergence rates of this method under different structural assumptions, namely, strong convexity, convexity, the Polyak-Lojasiewicz condition, and general non-convexity. We apply our framework to two problems in control and reinforcement learning. First, we look at the standard online actor-critic algorithm over finite state and action spaces and derive a convergence rate of O(k^(-2/5)), which recovers the best known rate derived specifically for this problem. Second, we study an online actor-critic algorithm for the linear-quadratic regulator and show that a convergence rate of O(k^(-2/3)) is achieved. This is the first time such a result is known in the literature. Finally, we support our theoretical analysis with numerical simulations where the convergence rates are visualized.

Federated learning (FL) aims to minimize the communication complexity of training a model over heterogeneous data distributed across many clients. A common approach is local methods, where clients take multiple optimization steps over local data before communicating with the server (e.g., FedAvg). Local methods can exploit similarity between clients' data. However, in existing analyses, this comes at the cost of slow convergence in terms of the dependence on the number of communication rounds R. On the other hand, global methods, where clients simply return a gradient vector in each round (e.g., SGD), converge faster in terms of R but fail to exploit the similarity between clients even when clients are homogeneous. We propose FedChain, an algorithmic framework that combines the strengths of local methods and global methods to achieve fast convergence in terms of R while leveraging the similarity between clients. Using FedChain, we instantiate algorithms that improve upon previously known rates in the general convex and PL settings, and are near-optimal (via an algorithm-independent lower bound that we show) for problems that satisfy strong convexity. Empirical results support this theoretical gain over existing methods.

In this paper, we introduce $\mathsf{CO}_3$, an algorithm for communication-efficiency federated Deep Neural Network (DNN) training.$\mathsf{CO}_3$ takes its name from three processing applied steps which reduce the communication load when transmitting the local gradients from the remote users to the Parameter Server.Namely:(i) gradient quantization through floating-point conversion, (ii) lossless compression of the quantized gradient, and (iii) quantization error correction.We carefully design each of the steps above so as to minimize the loss in the distributed DNN training when the communication overhead is fixed.In particular, in the design of steps (i) and (ii), we adopt the assumption that DNN gradients are distributed according to a generalized normal distribution.This assumption is validated numerically in the paper. For step (iii), we utilize an error feedback with memory decay mechanism to correct the quantization error introduced in step (i). We argue that this coefficient, similarly to the learning rate, can be optimally tuned to improve convergence. The performance of $\mathsf{CO}_3$ is validated through numerical simulations and is shown having better accuracy and improved stability at a reduced communication payload.

Hybrid precoding is a cost-efficient technique for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communications. This paper proposes a deep learning approach by using a distributed neural network for hybrid analog-and-digital precoding design with limited feedback. The proposed distributed neural precoding network, called DNet, is committed to achieving two objectives. First, the DNet realizes channel state information (CSI) compression with a distributed architecture of neural networks, which enables practical deployment on multiple users. Specifically, this neural network is composed of multiple independent sub-networks with the same structure and parameters, which reduces both the number of training parameters and network complexity. Secondly, DNet learns the calculation of hybrid precoding from reconstructed CSI from limited feedback. Different from existing black-box neural network design, the DNet is specifically designed according to the data form of the matrix calculation of hybrid precoding. Simulation results show that the proposed DNet significantly improves the performance up to nearly 50% compared to traditional limited feedback precoding methods under the tests with various CSI compression ratios.

We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.

Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.

Stochastic optimization algorithms implemented on distributed computing architectures are increasingly used to tackle large-scale machine learning applications. A key bottleneck in such distributed systems is the communication overhead for exchanging information such as stochastic gradients between different workers. Sparse communication with memory and the adaptive aggregation methodology are two successful frameworks among the various techniques proposed to address this issue. In this paper, we exploit the advantages of Sparse communication and Adaptive aggregated Stochastic Gradients to design a communication-efficient distributed algorithm named SASG. Specifically, we determine the workers who need to communicate with the parameter server based on the adaptive aggregation rule and then sparsify the transmitted information. Therefore, our algorithm reduces both the overhead of communication rounds and the number of communication bits in the distributed system. We define an auxiliary sequence and provide convergence results of the algorithm with the help of Lyapunov function analysis. Experiments on training deep neural networks show that our algorithm can significantly reduce the communication overhead compared to the previous methods, with little impact on training and testing accuracy.

Federated Learning has promised a new approach to resolve the challenges in machine learning by bringing computation to the data. The popularity of the approach has led to rapid progress in the algorithmic aspects and the emergence of systems capable of simulating Federated Learning. State of art systems in Federated Learning support a single node aggregator that is insufficient to train a large corpus of devices or train larger-sized models. As the model size or the number of devices increase the single node aggregator incurs memory and computation burden while performing fusion tasks. It also faces communication bottlenecks when a large number of model updates are sent to a single node. We classify the workload for the aggregator into categories and propose a new aggregation service for handling each load. Our aggregation service is based on a holistic approach that chooses the best solution depending on the model update size and the number of clients. Our system provides a fault-tolerant, robust and efficient aggregation solution utilizing existing parallel and distributed frameworks. Through evaluation, we show the shortcomings of the state of art approaches and how a single solution is not suitable for all aggregation requirements. We also provide a comparison of current frameworks with our system through extensive experiments.

Radio access network (RAN) slicing is an important pillar in cross-domain network slicing which covers RAN, edge, transport and core slicing. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) techniques have been widely applied for network management. However, most existing works do not take advantage of the knowledge transfer capability in ML. In this paper, we propose a deep transfer reinforcement learning (DTRL) scheme for joint radio and cache resource allocation to serve 5G RAN slicing. We first define a hierarchical architecture for the joint resource allocation. Then we propose two DTRL algorithms: Q-value-based deep transfer reinforcement learning (QDTRL) and action selection-based deep transfer reinforcement learning (ADTRL). In the proposed schemes, learner agents utilize expert agents' knowledge to improve their performance on target tasks. The proposed algorithms are compared with both the model-free exploration bonus deep Q-learning (EB-DQN) and the model-based priority proportional fairness and time-to-live (PPF-TTL) algorithms. Compared with EB-DQN, our proposed DTRL based method presents 21.4% lower delay for Ultra Reliable Low Latency Communications (URLLC) slice and 22.4% higher throughput for enhanced Mobile Broad Band (eMBB) slice, while achieving significantly faster convergence than EB-DQN. Moreover, 40.8% lower URLLC delay and 59.8% higher eMBB throughput are observed with respect to PPF-TTL.

We demonstrate that merely analog transmissions and match filtering can realize the function of an edge server in federated learning (FL). Therefore, a network with massively distributed user equipments (UEs) can achieve large-scale FL without an edge server. We also develop a training algorithm that allows UEs to continuously perform local computing without being interrupted by the global parameter uploading, which exploits the full potential of UEs' processing power. We derive convergence rates for the proposed schemes to quantify their training efficiency. The analyses reveal that when the interference obeys a Gaussian distribution, the proposed algorithm retrieves the convergence rate of a server-based FL. But if the interference distribution is heavy-tailed, then the heavier the tail, the slower the algorithm converges. Nonetheless, the system run time can be largely reduced by enabling computation in parallel with communication, whereas the gain is particularly pronounced when communication latency is high. These findings are corroborated via excessive simulations.

北京阿比特科技有限公司