Although various aspects of soft-constraint based norms have been explored, it is still challenging to understand preemption. Preemption is a situation where higher-level norms override lower-level norms when new information emerges. To address this, we propose a derivation state argumentation framework (DSA-framework). DSA-framework incorporates derivation states to explain how preemption arises based on evolving situational knowledge. Based on DSA-framework, we present an argumentative approach for explaining preemption. We formally prove that, under local optimality, DSA-framework can provide explanations why one consequence is obligatory or forbidden by soft-constraint based norms represented as logical constraint hierarchies.
One-shot transfer of dexterous grasps to novel scenes with object and context variations has been a challenging problem. While distilled feature fields from large vision models have enabled semantic correspondences across 3D scenes, their features are point-based and restricted to object surfaces, limiting their capability of modeling complex semantic feature distributions for hand-object interactions. In this work, we propose the \textit{neural attention field} for representing semantic-aware dense feature fields in the 3D space by modeling inter-point relevance instead of individual point features. Core to it is a transformer decoder that computes the cross-attention between any 3D query point with all the scene points, and provides the query point feature with an attention-based aggregation. We further propose a self-supervised framework for training the transformer decoder from only a few 3D pointclouds without hand demonstrations. Post-training, the attention field can be applied to novel scenes for semantics-aware dexterous grasping from one-shot demonstration. Experiments show that our method provides better optimization landscapes by encouraging the end-effector to focus on task-relevant scene regions, resulting in significant improvements in success rates on real robots compared with the feature-field-based methods.
Data from individual observations can originate from various sources or modalities but are often intrinsically linked. Multimodal data integration can enrich information content compared to single-source data. Manifold alignment is a form of data integration that seeks a shared, underlying low-dimensional representation of multiple data sources that emphasizes similarities between alternative representations of the same entities. Semi-supervised manifold alignment relies on partially known correspondences between domains, either through shared features or through other known associations. In this paper, we introduce two semi-supervised manifold alignment methods. The first method, Shortest Paths on the Union of Domains (SPUD), forms a unified graph structure using known correspondences to establish graph edges. By learning inter-domain geodesic distances, SPUD creates a global, multi-domain structure. The second method, MASH (Manifold Alignment via Stochastic Hopping), learns local geometry within each domain and forms a joint diffusion operator using known correspondences to iteratively learn new inter-domain correspondences through a random-walk approach. Through the diffusion process, MASH forms a coupling matrix that links heterogeneous domains into a unified structure. We compare SPUD and MASH with existing semi-supervised manifold alignment methods and show that they outperform competing methods in aligning true correspondences and cross-domain classification. In addition, we show how these methods can be applied to transfer label information between domains.
User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By comparing NCA and InfoNCA, we demonstrate that the well-observed decreasing-likelihood trend of DPO/InfoNCA is caused by their focus on adjusting relative likelihood across different responses. In contrast, NCA optimizes the absolute likelihood for each response, thereby effectively preventing the chosen likelihood from decreasing. We evaluate our methods in both reward and preference settings with Mistral-8*7B and 7B models. Experiments suggest that InfoNCA/NCA surpasses various preference baselines when reward datasets are available. We also find NCA significantly outperforms DPO in complex reasoning tasks like math and coding.
To effectively address potential harms from AI systems, it is essential to identify and mitigate system-level hazards. Current analysis approaches focus on individual components of an AI system, like training data or models, in isolation, overlooking hazards from component interactions or how they are situated within a company's development process. To this end, we draw from the established field of system safety, which considers safety as an emergent property of the entire system, not just its components. In this work, we translate System Theoretic Process Analysis (STPA) - a recognized system safety framework - for analyzing AI operation and development processes. We focus on systems that rely on machine learning algorithms and conducted STPA on three case studies involving linear regression, reinforcement learning, and transformer-based generative models. Our analysis explored how STPA's control and system-theoretic perspectives apply to AI systems and whether unique AI traits - such as model opacity, capability uncertainty, and output complexity - necessitate significant modifications to the framework. We find that the key concepts and steps of conducting an STPA readily apply, albeit with a few adaptations tailored for AI systems. We present the Process-oriented Hazard Analysis for AI Systems (PHASE) as a guideline that adapts STPA concepts for AI, making STPA-based hazard analysis more accessible. PHASE enables four key affordances for analysts responsible for managing AI system harms: 1) detection of hazards at the systems level, including those from accumulation of disparate issues; 2) explicit acknowledgment of social factors contributing to experiences of algorithmic harms; 3) creation of traceable accountability chains between harms and those who can mitigate the harm; and 4) ongoing monitoring and mitigation of new hazards.
Entity alignment is crucial for merging knowledge across knowledge graphs, as it matches entities with identical semantics. The standard method matches these entities based on their embedding similarities using semi-supervised learning. However, diverse data sources lead to non-isomorphic neighborhood structures for aligned entities, complicating alignment, especially for less common and sparsely connected entities. This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement, addressing scalability challenges in handling extensive datasets where scale computing excels. The framework uses seeds for anchoring and selects optimal relationship pairs to create soft labels rich in neighborhood features and semantic relationship data. A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples, taking into account the non-isomorphic neighborhood structures. Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets, significantly improving the quality of entity alignment.
As diffusion models become increasingly popular, the misuse of copyrighted and private images has emerged as a major concern. One promising solution to mitigate this issue is identifying the contribution of specific training samples in generative models, a process known as data attribution. Existing data attribution methods for diffusion models typically quantify the contribution of a training sample by evaluating the change in diffusion loss when the sample is included or excluded from the training process. However, we argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss. Specifically, these approaches measure the divergence between predicted and ground truth distributions, which leads to an indirect comparison between the predicted distributions and cannot represent the variances between model behaviors. To address these issues, we aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance, which is achieved by Diffusion Attribution Score (DAS). Underpinned by rigorous theoretical analysis, we elucidate the effectiveness of DAS. Additionally, we explore strategies to accelerate DAS calculations, facilitating its application to large-scale diffusion models. Our extensive experiments across various datasets and diffusion models demonstrate that DAS significantly surpasses previous benchmarks in terms of the linear data-modelling score, establishing new state-of-the-art performance.
Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in //lwpyh.github.io/ProMaC/.
Carbon emissions are rising at an alarming rate, posing a significant threat to global efforts to mitigate climate change. Electric vehicles have emerged as a promising solution, but their reliance on lithium-ion batteries introduces the critical challenge of battery degradation. Accurate prediction and forecasting of battery degradation over both short and long time spans are essential for optimizing performance, extending battery life, and ensuring effective long-term energy management. This directly influences the reliability, safety, and sustainability of EVs, supporting their widespread adoption and aligning with key UN SDGs. In this paper, we present a novel approach to the prediction and long-term forecasting of battery degradation using Scientific Machine Learning framework which integrates domain knowledge with neural networks, offering more interpretable and scientifically grounded solutions for both predicting short-term battery health and forecasting degradation over extended periods. This hybrid approach captures both known and unknown degradation dynamics, improving predictive accuracy while reducing data requirements. We incorporate ground-truth data to inform our models, ensuring that both the predictions and forecasts reflect practical conditions. The model achieved MSE of 9.90 with the UDE and 11.55 with the NeuralODE, in experimental data, a loss of 1.6986 with the UDE, and a MSE of 2.49 in the NeuralODE, demonstrating the enhanced precision of our approach. This integration of data-driven insights with SciML's strengths in interpretability and scalability allows for robust battery management. By enhancing battery longevity and minimizing waste, our approach contributes to the sustainability of energy systems and accelerates the global transition toward cleaner, more responsible energy solutions, aligning with the UN's SDG agenda.
Surface cracks in infrastructure can lead to significant deterioration and costly maintenance if not efficiently repaired. Manual repair methods are labor-intensive, time-consuming, and imprecise and thus difficult to scale to large areas. While advancements in robotic perception and manipulation have progressed autonomous crack repair, existing methods still face three key challenges: accurate localization of cracks within the robot's coordinate frame, (ii) adaptability to varying crack depths and widths, and (iii) validation of the repair process under realistic conditions. This paper presents an adaptive, autonomous system for surface crack detection and repair using robotics with advanced sensing technologies to enhance precision and safety for humans. The system uses an RGB-D camera for crack detection, a laser scanner for precise measurement, and an extruder and pump for material deposition. To address one of the key challenges, the laser scanner is used to enhance the crack coordinates for accurate localization. Furthermore, our approach demonstrates that an adaptive crack-filling method is more efficient and effective than a fixed-speed approach, with experimental results confirming both precision and consistency. In addition, to ensure real-world applicability and testing repeatability, we introduce a novel validation procedure using 3D-printed crack specimens that accurately simulate real-world conditions. This research contributes to the evolving field of human-robot interaction in construction by demonstrating how adaptive robotic systems can reduce the need for manual labor, improve safety, and enhance the efficiency of maintenance operations, ultimately paving the way for more sophisticated and integrated construction robotics.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.