亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many Artificial Intelligence (AI) algorithms are inspired by physics and employ stochastic fluctuations. We connect these physics-inspired AI algorithms by unifying them under a single mathematical framework that we call Thermodynamic AI. Seemingly disparate algorithmic classes can be described by this framework, for example, (1) Generative diffusion models, (2) Bayesian neural networks, (3) Monte Carlo sampling and (4) Simulated annealing. Such Thermodynamic AI algorithms are currently run on digital hardware, ultimately limiting their scalability and overall potential. Stochastic fluctuations naturally occur in physical thermodynamic systems, and such fluctuations can be viewed as a computational resource. Hence, we propose a novel computing paradigm, where software and hardware become inseparable. Our algorithmic unification allows us to identify a single full-stack paradigm, involving Thermodynamic AI hardware, that could accelerate such algorithms. We contrast Thermodynamic AI hardware with quantum computing where noise is a roadblock rather than a resource. Thermodynamic AI hardware can be viewed as a novel form of computing, since it uses a novel fundamental building block. We identify stochastic bits (s-bits) and stochastic modes (s-modes) as the respective building blocks for discrete and continuous Thermodynamic AI hardware. In addition to these stochastic units, Thermodynamic AI hardware employs a Maxwell's demon device that guides the system to produce non-trivial states. We provide a few simple physical architectures for building these devices and we develop a formalism for programming the hardware via gate sequences. We hope to stimulate discussion around this new computing paradigm. Beyond acceleration, we believe it will impact the design of both hardware and algorithms, while also deepening our understanding of the connection between physics and intelligence.

相關內容

Real-Time systems are often implemented as reactive systems that respond to stimuli and complete tasks in a known bounded time. The development process of such systems usually involves using a cycle-accurate simulation environment and even the digital twine system that can accurately simulate the system and the environment it operates in. In addition, many real-time systems require high reliability and strive to be immune against security attacks. Thus, the development environment must support reliability-related events such as the failure of a sensor, malfunction of a subsystem, and foreseen events of Cyber security attacks. This paper presents the SCART framework - an innovative solution that aims to allow extending simulation environments of real-time systems with the capability to incorporate reliability-related events and advanced cyber security attacks, e.g., an attack on a single sensor as well as "complex security attacks" that aim to change the behavior of a group of sensors. We validate our system by applying the new proposed environment on control a drone's flight control system including its navigation system that uses machine learning algorithms. Such a system is very challenging since it requires many experiments that can hardly be achieved by using live systems. We showed that using SCART is very efficient, can increase the model's accuracy, and significantly reduce false-positive rates. Some of these experiments were also validated using a set of "real drones".

Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot.

Recent years have witnessed significant progress in the field of neural surface reconstruction. While the extensive focus was put on volumetric and implicit approaches, a number of works have shown that explicit graphics primitives such as point clouds can significantly reduce computational complexity, without sacrificing the reconstructed surface quality. However, less emphasis has been put on modeling dynamic surfaces with point primitives. In this work, we present a dynamic point field model that combines the representational benefits of explicit point-based graphics with implicit deformation networks to allow efficient modeling of non-rigid 3D surfaces. Using explicit surface primitives also allows us to easily incorporate well-established constraints such as-isometric-as-possible regularisation. While learning this deformation model is prone to local optima when trained in a fully unsupervised manner, we propose to additionally leverage semantic information such as keypoint dynamics to guide the deformation learning. We demonstrate our model with an example application of creating an expressive animatable human avatar from a collection of 3D scans. Here, previous methods mostly rely on variants of the linear blend skinning paradigm, which fundamentally limits the expressivity of such models when dealing with complex cloth appearances such as long skirts. We show the advantages of our dynamic point field framework in terms of its representational power, learning efficiency, and robustness to out-of-distribution novel poses.

Consensus is one of the most fundamental problems in distributed computing. This paper studies the consensus problem in a synchronous dynamic directed network, in which communication is controlled by an oblivious message adversary. The question when consensus is possible in this model has already been studied thoroughly in the literature from a combinatorial perspective, and is known to be challenging. This paper presents a topological perspective on consensus solvability under oblivious message adversaries, which provides interesting new insights. Our main contribution is a topological characterization of consensus solvability, which also leads to explicit decision procedures. Our approach is based on the novel notion of a communication pseudosphere, which can be seen as the message-passing analog of the well-known standard chromatic subdivision for wait-free shared memory systems. We further push the elegance and expressiveness of the "geometric" reasoning enabled by the topological approach by dealing with uninterpreted complexes, which considerably reduce the size of the protocol complex, and by labeling facets with information flow arrows, which give an intuitive meaning to the implicit epistemic status of the faces in a protocol complex.

Topologically interlocked materials and structures, which are assemblies of unbonded interlocking building blocks, are promising concepts for versatile structural applications. They have been shown to exhibit exceptional mechanical properties, including outstanding combinations of stiffness, strength, and toughness, beyond those achievable with common engineering materials. Recent work has established a theoretical upper limit for the strength and toughness of beam-like topologically interlocked structures. However, this theoretical limit is only achievable for structures with unrealistically high friction coefficients; therefore, it remains unknown whether it is achievable in actual structures. Here, we demonstrate that a hierarchical approach for topological interlocking, inspired by biological systems, overcomes these limitations and provides a path toward optimized mechanical performance. We consider beam-like topologically interlocked structures that present a sinusoidal surface morphology with controllable amplitude and wavelength and examine the properties of the structures using numerical simulations. The results show that the presence of surface morphologies increases the effective frictional strength of the interfaces and, if well-designed, enables us to reach the theoretical limit of the structural carrying capacity with realistic friction coefficients. Furthermore, we observe that the contribution of the surface morphology to the effective friction coefficient of the interface is well described by a criterion combining the surface curvature and surface gradient. Our study demonstrates the ability to architecture the surface morphology in beam-like topological interlocked structures to significantly enhance its structural performance.

In the present paper we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier--Stokes--Fourier system. The Monte Carlo method, which is frequently used for the approximation of statistical moments, is combined with a suitable deterministic discretisation method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to a statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for the Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.

We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems. Specifically, we design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit. Notably, the system integrates learnable lateral competition, noise injection, and elements of predictive coding, an emerging and viable neurobiological process theory of cortical function, with the forward-forward (FF) adaptation scheme. Furthermore, PFF efficiently learns to propagate learning signals and updates synapses with forward passes only, eliminating key structural and computational constraints imposed by backpropagation-based schemes. Besides computational advantages, the PFF process could prove useful for understanding the learning mechanisms behind biological neurons that use local signals despite missing feedback connections. We run experiments on image data and demonstrate that the PFF procedure works as well as backpropagation, offering a promising brain-inspired algorithm for classifying, reconstructing, and synthesizing data patterns.

Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司