The rapid progress of Large Language Models (LLMs) has made them capable of performing astonishingly well on various tasks including document completion and question answering. The unregulated use of these models, however, can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc. Therefore, reliable detection of AI-generated text can be critical to ensure the responsible use of LLMs. Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques that imprint specific patterns onto them. In this paper, both empirically and theoretically, we show that these detectors are not reliable in practical scenarios. Empirically, we show that paraphrasing attacks, where a light paraphraser is applied on top of the generative text model, can break a whole range of detectors, including the ones using the watermarking schemes as well as neural network-based detectors and zero-shot classifiers. We then provide a theoretical impossibility result indicating that for a sufficiently good language model, even the best-possible detector can only perform marginally better than a random classifier. Finally, we show that even LLMs protected by watermarking schemes can be vulnerable against spoofing attacks where adversarial humans can infer hidden watermarking signatures and add them to their generated text to be detected as text generated by the LLMs, potentially causing reputational damages to their developers. We believe these results can open an honest conversation in the community regarding the ethical and reliable use of AI-generated text.
Machine generated text is increasingly difficult to distinguish from human authored text. Powerful open-source models are freely available, and user-friendly tools that democratize access to generative models are proliferating. ChatGPT, which was released shortly after the first edition of this survey, epitomizes these trends. The great potential of state-of-the-art natural language generation (NLG) systems is tempered by the multitude of avenues for abuse. Detection of machine generated text is a key countermeasure for reducing abuse of NLG models, with significant technical challenges and numerous open problems. We provide a survey that includes both 1) an extensive analysis of threat models posed by contemporary NLG systems, and 2) the most complete review of machine generated text detection methods to date. This survey places machine generated text within its cybersecurity and social context, and provides strong guidance for future work addressing the most critical threat models, and ensuring detection systems themselves demonstrate trustworthiness through fairness, robustness, and accountability.
Training keyphrase generation (KPG) models require a large amount of annotated data, which can be prohibitively expensive and often limited to specific domains. In this study, we first demonstrate that large distribution shifts among different domains severely hinder the transferability of KPG models. We then propose a three-stage pipeline, which gradually guides KPG models' learning focus from general syntactical features to domain-related semantics, in a data-efficient manner. With Domain-general Phrase pre-training, we pre-train Sequence-to-Sequence models with generic phrase annotations that are widely available on the web, which enables the models to generate phrases in a wide range of domains. The resulting model is then applied in the Transfer Labeling stage to produce domain-specific pseudo keyphrases, which help adapt models to a new domain. Finally, we fine-tune the model with limited data with true labels to fully adapt it to the target domain. Our experiment results show that the proposed process can produce good-quality keyphrases in new domains and achieve consistent improvements after adaptation with limited in-domain annotated data. All code and datasets are available at //github.com/memray/OpenNMT-kpg-release.
Denoising diffusion models have shown remarkable potential in various generation tasks. The open-source large-scale text-to-image model, Stable Diffusion, becomes prevalent as it can generate realistic artistic or facial images with personalization through fine-tuning on a limited number of new samples. However, this has raised privacy concerns as adversaries can acquire facial images online and fine-tune text-to-image models for malicious editing, leading to baseless scandals, defamation, and disruption to victims' lives. Prior research efforts have focused on deriving adversarial loss from conventional training processes for facial privacy protection through adversarial perturbations. However, existing algorithms face two issues: 1) they neglect the image-text fusion module, which is the vital module of text-to-image diffusion models, and 2) their defensive performance is unstable against different attacker prompts. In this paper, we propose the Adversarial Decoupling Augmentation Framework (ADAF), addressing these issues by targeting the image-text fusion module to enhance the defensive performance of facial privacy protection algorithms. ADAF introduces multi-level text-related augmentations for defense stability against various attacker prompts. Concretely, considering the vision, text, and common unit space, we propose Vision-Adversarial Loss, Prompt-Robust Augmentation, and Attention-Decoupling Loss. Extensive experiments on CelebA-HQ and VGGFace2 demonstrate ADAF's promising performance, surpassing existing algorithms.
A generative AI model -- such as DALL-E, Stable Diffusion, and ChatGPT -- can generate extremely realistic-looking content, posing growing challenges to the authenticity of information. To address the challenges, watermark has been leveraged to detect AI-generated content. Specifically, a watermark is embedded into an AI-generated content before it is released. A content is detected as AI-generated if a similar watermark can be decoded from it. In this work, we perform a systematic study on the robustness of such watermark-based AI-generated content detection. We focus on AI-generated images. Our work shows that an attacker can post-process an AI-generated watermarked image via adding a small, human-imperceptible perturbation to it, such that the post-processed AI-generated image evades detection while maintaining its visual quality. We demonstrate the effectiveness of our attack both theoretically and empirically. Moreover, to evade detection, our adversarial post-processing method adds much smaller perturbations to the AI-generated images and thus better maintain their visual quality than existing popular image post-processing methods such as JPEG compression, Gaussian blur, and Brightness/Contrast. Our work demonstrates the insufficiency of existing watermark-based detection of AI-generated content, highlighting the urgent needs of new detection methods.
The recent improvement in code generation capabilities due to the use of large language models has mainly benefited general purpose programming languages. Domain specific languages, such as the ones used for IT Automation, have received far less attention, despite involving many active developers and being an essential component of modern cloud platforms. This work focuses on the generation of Ansible-YAML, a widely used markup language for IT Automation. We present Ansible Wisdom, a natural-language to Ansible-YAML code generation tool, aimed at improving IT automation productivity. Ansible Wisdom is a transformer-based model, extended by training with a new dataset containing Ansible-YAML. We also develop two novel performance metrics for YAML and Ansible to capture the specific characteristics of this domain. Results show that Ansible Wisdom can accurately generate Ansible script from natural language prompts with performance comparable or better than existing state of the art code generation models.
This paper presents an innovative approach to address the problems researchers face in Emotion Aware Recommender Systems (EARS): the difficulty and cumbersome collecting voluminously good quality emotion-tagged datasets and an effective way to protect users' emotional data privacy. Without enough good-quality emotion-tagged datasets, researchers cannot conduct repeatable affective computing research in EARS that generates personalized recommendations based on users' emotional preferences. Similarly, if we fail to fully protect users' emotional data privacy, users could resist engaging with EARS services. This paper introduced a method that detects affective features in subjective passages using the Generative Pre-trained Transformer Technology, forming the basis of the Affective Index and Affective Index Indicator (AII). Eliminate the need for users to build an affective feature detection mechanism. The paper advocates for a separation of responsibility approach where users protect their emotional profile data while EARS service providers refrain from retaining or storing it. Service providers can update users' Affective Indices in memory without saving their privacy data, providing Affective Aware recommendations without compromising user privacy. This paper offers a solution to the subjectivity and variability of emotions, data privacy concerns, and evaluation metrics and benchmarks, paving the way for future EARS research.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.