亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation has been proposed in Kirch et al. who prove posterior consistency for spectral density estimation in combination with the Bernstein-Dirichlet process prior for Gaussian time series. In this paper, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem of Shalizi for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood as proposed by Choudhuri, Ghosal and Roy is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.

相關內容

This paper deals with robust inference for parametric copula models. Estimation using Canonical Maximum Likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on the Maximum Mean Discrepancy (MMD) principle. We derive non-asymptotic oracle inequalities, consistency and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any assumption on the copula family, and can be applied in the presence of outliers or under misspecification. Moreover, in our MMD framework, the statistical inference of copula models for which there exists no density with respect to the Lebesgue measure on $[0,1]^d$, as the Marshall-Olkin copula, becomes feasible. A simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum likelihood estimation. An R package implementing the MMD estimator for copula models is available.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. The goal is to obtain a discretization consisting of "local" problems that can be solved on parallel computers efficiently. However, this introduces significant sources of error that must be evaluated. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

The popular LSPE($\lambda$) algorithm for policy evaluation is revisited to derive a concentration bound that gives high probability performance guarantees from some time on.

In this paper, we propose a novel nonconvex approach to robust principal component analysis for HSI denoising, which focuses on simultaneously developing more accurate approximations to both rank and column-wise sparsity for the low-rank and sparse components, respectively. In particular, the new method adopts the log-determinant rank approximation and a novel $\ell_{2,\log}$ norm, to restrict the local low-rank or column-wisely sparse properties for the component matrices, respectively. For the $\ell_{2,\log}$-regularized shrinkage problem, we develop an efficient, closed-form solution, which is named $\ell_{2,\log}$-shrinkage operator. The new regularization and the corresponding operator can be generally used in other problems that require column-wise sparsity. Moreover, we impose the spatial-spectral total variation regularization in the log-based nonconvex RPCA model, which enhances the global piece-wise smoothness and spectral consistency from the spatial and spectral views in the recovered HSI. Extensive experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method in denoising HSIs.

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.

Many representative graph neural networks, $e.g.$, GPR-GNN and ChebyNet, approximate graph convolutions with graph spectral filters. However, existing work either applies predefined filter weights or learns them without necessary constraints, which may lead to oversimplified or ill-posed filters. To overcome these issues, we propose $\textit{BernNet}$, a novel graph neural network with theoretical support that provides a simple but effective scheme for designing and learning arbitrary graph spectral filters. In particular, for any filter over the normalized Laplacian spectrum of a graph, our BernNet estimates it by an order-$K$ Bernstein polynomial approximation and designs its spectral property by setting the coefficients of the Bernstein basis. Moreover, we can learn the coefficients (and the corresponding filter weights) based on observed graphs and their associated signals and thus achieve the BernNet specialized for the data. Our experiments demonstrate that BernNet can learn arbitrary spectral filters, including complicated band-rejection and comb filters, and it achieves superior performance in real-world graph modeling tasks.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

While Generative Adversarial Networks (GANs) have empirically produced impressive results on learning complex real-world distributions, recent work has shown that they suffer from lack of diversity or mode collapse. The theoretical work of Arora et al.~\cite{AroraGeLiMaZh17} suggests a dilemma about GANs' statistical properties: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse. In contrast, we show in this paper that GANs can in principle learn distributions in Wasserstein distance (or KL-divergence in many cases) with polynomial sample complexity, if the discriminator class has strong distinguishing power against the particular generator class (instead of against all possible generators). For various generator classes such as mixture of Gaussians, exponential families, and invertible neural networks generators, we design corresponding discriminators (which are often neural nets of specific architectures) such that the Integral Probability Metric (IPM) induced by the discriminators can provably approximate the Wasserstein distance and/or KL-divergence. This implies that if the training is successful, then the learned distribution is close to the true distribution in Wasserstein distance or KL divergence, and thus cannot drop modes. Our preliminary experiments show that on synthetic datasets the test IPM is well correlated with KL divergence, indicating that the lack of diversity may be caused by the sub-optimality in optimization instead of statistical inefficiency.

We study the problem of learning a latent variable model from a stream of data. Latent variable models are popular in practice because they can explain observed data in terms of unobserved concepts. These models have been traditionally studied in the offline setting. In the online setting, on the other hand, the online EM is arguably the most popular algorithm for learning latent variable models. Although the online EM is computationally efficient, it typically converges to a local optimum. In this work, we develop a new online learning algorithm for latent variable models, which we call SpectralLeader. SpectralLeader always converges to the global optimum, and we derive a sublinear upper bound on its $n$-step regret in the bag-of-words model. In both synthetic and real-world experiments, we show that SpectralLeader performs similarly to or better than the online EM with tuned hyper-parameters.

In this paper we study the frequentist convergence rate for the Latent Dirichlet Allocation (Blei et al., 2003) topic models. We show that the maximum likelihood estimator converges to one of the finitely many equivalent parameters in Wasserstein's distance metric at a rate of $n^{-1/4}$ without assuming separability or non-degeneracy of the underlying topics and/or the existence of more than three words per document, thus generalizing the previous works of Anandkumar et al. (2012, 2014) from an information-theoretical perspective. We also show that the $n^{-1/4}$ convergence rate is optimal in the worst case.

北京阿比特科技有限公司