亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pretrained diffusion models (DMs) have recently been popularly used in solving inverse problems (IPs). The existing methods mostly interleave iterative steps in the reverse diffusion process and iterative steps to bring the iterates closer to satisfying the measurement constraint. However, such interleaving methods struggle to produce final results that look like natural objects of interest (i.e., manifold feasibility) and fit the measurement (i.e., measurement feasibility), especially for nonlinear IPs. Moreover, their capabilities to deal with noisy IPs with unknown types and levels of measurement noise are unknown. In this paper, we advocate viewing the reverse process in DMs as a function and propose a novel plug-in method for solving IPs using pretrained DMs, dubbed DMPlug. DMPlug addresses the issues of manifold feasibility and measurement feasibility in a principled manner, and also shows great potential for being robust to unknown types and levels of noise. Through extensive experiments across various IP tasks, including two linear and three nonlinear IPs, we demonstrate that DMPlug consistently outperforms state-of-the-art methods, often by large margins especially for nonlinear IPs. The code is available at //github.com/sun-umn/DMPlug.

相關內容

NeurIPS 是全球最受矚目的AI、機器學習頂級學術會議之一,每年全球的人工智能愛好者和科學家都會在這里聚集,發布最新研究。NeurIPS 2019大會將在12月8日-14日在加拿大溫哥華舉行。據官方統計消息,NeurIPS今年共收到投稿6743篇,其中接收論文1428篇,接收率21.1%。官網地址:

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Large Language Models (LLMs) are increasingly employed in complex workflows, where different LLMs and fine-tuned variants collaboratively address complex tasks. However, these systems face significant inefficiencies due to redundant context processing of the shared context. We propose DroidSpeak, a framework that optimizes context sharing between fine-tuned LLMs derived from the same foundational model. DroidSpeak identifies critical layers in the KV cache and selectively recomputes them, enabling effective reuse of intermediate data while maintaining high accuracy. Our approach balances computational efficiency and task fidelity, significantly reducing inference latency and throughput bottlenecks. Experiments on diverse datasets and model pairs demonstrate that DroidSpeak achieves up to 3x higher throughputs and 2.6x faster prefill times with negligible accuracy loss compared to full recomputation.

Retrieve-augmented generation (RAG) frameworks have emerged as a promising solution to multi-hop question answering(QA) tasks since it enables large language models (LLMs) to incorporate external knowledge and mitigate their inherent knowledge deficiencies. Despite this progress, existing RAG frameworks, which usually follows the retrieve-then-read paradigm, often struggle with multi-hop QA with temporal information since it has difficulty retrieving and synthesizing accurate time-related information. To address the challenge, this paper proposes a novel framework called review-then-refine, which aims to enhance LLM performance in multi-hop QA scenarios with temporal information. Our approach begins with a review phase, where decomposed sub-queries are dynamically rewritten with temporal information, allowing for subsequent adaptive retrieval and reasoning process. In addition, we implement adaptive retrieval mechanism to minimize unnecessary retrievals, thus reducing the potential for hallucinations. In the subsequent refine phase, the LLM synthesizes the retrieved information from each sub-query along with its internal knowledge to formulate a coherent answer. Extensive experimental results across multiple datasets demonstrate the effectiveness of our proposed framework, highlighting its potential to significantly improve multi-hop QA capabilities in LLMs.

Medical researchers and clinicians often need to perform novel segmentation tasks on a set of related images. Existing methods for segmenting a new dataset are either interactive, requiring substantial human effort for each image, or require an existing set of manually labeled images. We introduce a system, MultiverSeg, that enables practitioners to rapidly segment an entire new dataset without requiring access to any existing labeled data from that task or domain. Along with the image to segment, the model takes user interactions such as clicks, bounding boxes or scribbles as input, and predicts a segmentation. As the user segments more images, those images and segmentations become additional inputs to the model, providing context. As the context set of labeled images grows, the number of interactions required to segment each new image decreases. We demonstrate that MultiverSeg enables users to interactively segment new datasets efficiently, by amortizing the number of interactions per image to achieve an accurate segmentation. Compared to using a state-of-the-art interactive segmentation method, using MultiverSeg reduced the total number of scribble steps by 53% and clicks by 36% to achieve 90% Dice on sets of images from unseen tasks. We release code and model weights at //multiverseg.csail.mit.edu

Automatic Heuristic Design (AHD) is an active research area due to its utility in solving complex search and NP-hard combinatorial optimization problems in the real world. The recent advancements in Large Language Models (LLMs) introduce new possibilities by coupling LLMs with evolutionary computation to automatically generate heuristics, known as LLM-based Evolutionary Program Search (LLM-EPS). While previous LLM-EPS studies obtained great performance on various tasks, there is still a gap in understanding the properties of heuristic search spaces and achieving a balance between exploration and exploitation, which is a critical factor in large heuristic search spaces. In this study, we address this gap by proposing two diversity measurement metrics and perform an analysis on previous LLM-EPS approaches, including FunSearch, EoH, and ReEvo. Results on black-box AHD problems reveal that while EoH demonstrates higher diversity than FunSearch and ReEvo, its objective score is unstable. Conversely, ReEvo's reflection mechanism yields good objective scores but fails to optimize diversity effectively. With this finding in mind, we introduce HSEvo, an adaptive LLM-EPS framework that maintains a balance between diversity and convergence with a harmony search algorithm. Through experimentation, we find that HSEvo achieved high diversity indices and good objective scores while remaining cost-effective. These results underscore the importance of balancing exploration and exploitation and understanding heuristic search spaces in designing frameworks in LLM-EPS.

Diffusion models, particularly latent diffusion models, have demonstrated remarkable success in text-driven human motion generation. However, it remains challenging for latent diffusion models to effectively compose multiple semantic concepts into a single, coherent motion sequence. To address this issue, we propose EnergyMoGen, which includes two spectrums of Energy-Based Models: (1) We interpret the diffusion model as a latent-aware energy-based model that generates motions by composing a set of diffusion models in latent space; (2) We introduce a semantic-aware energy model based on cross-attention, which enables semantic composition and adaptive gradient descent for text embeddings. To overcome the challenges of semantic inconsistency and motion distortion across these two spectrums, we introduce Synergistic Energy Fusion. This design allows the motion latent diffusion model to synthesize high-quality, complex motions by combining multiple energy terms corresponding to textual descriptions. Experiments show that our approach outperforms existing state-of-the-art models on various motion generation tasks, including text-to-motion generation, compositional motion generation, and multi-concept motion generation. Additionally, we demonstrate that our method can be used to extend motion datasets and improve the text-to-motion task.

With the adoption of retrieval-augmented generation (RAG), large language models (LLMs) are expected to ground their generation to the retrieved contexts. Yet, this is hindered by position bias of LLMs, failing to evenly attend to all contexts. Previous work has addressed this by synthesizing contexts with perturbed positions of gold segment, creating a position-diversified train set. We extend this intuition to propose consistency regularization with augmentation and distillation. First, we augment each training instance with its position perturbation to encourage consistent predictions, regardless of ordering. We also distill behaviors of this pair, although it can be counterproductive in certain RAG scenarios where the given order from the retriever is crucial for generation quality. We thus propose CORD, balancing COnsistency and Rank Distillation. CORD adaptively samples noise-controlled perturbations from an interpolation space, ensuring both consistency and respect for the rank prior. Empirical results show this balance enables CORD to outperform consistently in diverse RAG benchmarks.

Physics problems constitute a significant aspect of reasoning, necessitating complicated reasoning ability and abundant physics knowledge. However, existing large language models (LLMs) frequently fail due to a lack of knowledge or incorrect knowledge application. To mitigate these issues, we propose Physics Reasoner, a knowledge-augmented framework to solve physics problems with LLMs. Specifically, the proposed framework constructs a comprehensive formula set to provide explicit physics knowledge and utilizes checklists containing detailed instructions to guide effective knowledge application. Namely, given a physics problem, Physics Reasoner solves it through three stages: problem analysis, formula retrieval, and guided reasoning. During the process, checklists are employed to enhance LLMs' self-improvement in the analysis and reasoning stages. Empirically, Physics Reasoner mitigates the issues of insufficient knowledge and incorrect application, achieving state-of-the-art performance on SciBench with an average accuracy improvement of 5.8%.

Despite the significant progress made by existing retrieval augmented language models (RALMs) in providing trustworthy responses and grounding in reliable sources, they often overlook effective alignment with human preferences. In the alignment process, reward models (RMs) act as a crucial proxy for human values to guide optimization. However, it remains unclear how to evaluate and select a reliable RM for preference alignment in RALMs. To this end, we propose RAG-RewardBench, the first benchmark for evaluating RMs in RAG settings. First, we design four crucial and challenging RAG-specific scenarios to assess RMs, including multi-hop reasoning, fine-grained citation, appropriate abstain, and conflict robustness. Then, we incorporate 18 RAG subsets, six retrievers, and 24 RALMs to increase the diversity of data sources. Finally, we adopt an LLM-as-a-judge approach to improve preference annotation efficiency and effectiveness, exhibiting a strong correlation with human annotations. Based on the RAG-RewardBench, we conduct a comprehensive evaluation of 45 RMs and uncover their limitations in RAG scenarios. Additionally, we also reveal that existing trained RALMs show almost no improvement in preference alignment, highlighting the need for a shift towards preference-aligned training.We release our benchmark and code publicly at //huggingface.co/datasets/jinzhuoran/RAG-RewardBench/ for future work.

This paper studies sample average approximation (SAA) in solving convex or strongly convex stochastic programming (SP) problems. Under some common regularity conditions, we show -- perhaps for the first time -- that SAA's sample complexity can be completely free from any quantification of metric entropy (such as the logarithm of the covering number), leading to a significantly more efficient rate with dimensionality $d$ than most existing results. From the newly established complexity bounds, an important revelation is that SAA and the canonical stochastic mirror descent (SMD) method, two mainstream solution approaches to SP, entail almost identical rates of sample efficiency, lifting a theoretical discrepancy of SAA from SMD by the order of $O(d)$. Furthermore, this paper explores non-Lipschitzian scenarios where SAA maintains provable efficacy but the corresponding results for SMD remain mostly unexplored, indicating the potential of SAA's better applicability in some irregular settings.

Despite the recent progress on 6D object pose estimation methods for robotic grasping, a substantial performance gap persists between the capabilities of these methods on existing datasets and their efficacy in real-world grasping and mobile manipulation tasks, particularly when robots rely solely on their monocular egocentric field of view (FOV). Existing real-world datasets primarily focus on table-top grasping scenarios, where a robot arm is placed in a fixed position and the objects are centralized within the FOV of fixed external camera(s). Assessing performance on such datasets may not accurately reflect the challenges encountered in everyday grasping and mobile manipulation tasks within kitchen environments such as retrieving objects from higher shelves, sinks, dishwashers, ovens, refrigerators, or microwaves. To address this gap, we present KITchen, a novel benchmark designed specifically for estimating the 6D poses of objects located in diverse positions within kitchen settings. For this purpose, we recorded a comprehensive dataset comprising around 205k real-world RGBD images for 111 kitchen objects captured in two distinct kitchens, utilizing a humanoid robot with its egocentric perspectives. Subsequently, we developed a semi-automated annotation pipeline, to streamline the labeling process of such datasets, resulting in the generation of 2D object labels, 2D object segmentation masks, and 6D object poses with minimal human effort. The benchmark, the dataset, and the annotation pipeline will be publicly available at //kitchen-dataset.github.io/KITchen.

北京阿比特科技有限公司