The sliding cubes model is a well-established theoretical framework that supports the analysis of reconfiguration algorithms for modular robots consisting of face-connected cubes. The best algorithm currently known for the reconfiguration problem, by Abel and Kominers [arXiv, 2011], uses O(n3) moves to transform any n-cube configuration into any other n-cube configuration. As is common in the literature, this algorithm reconfigures the input into an intermediate canonical shape. In this paper we present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical shape using a number of moves proportional to the sum of coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our algorithm directly extends to dimensions higher than three.
The search for "biologically plausible" learning algorithms has converged on the idea of representing gradients as activity differences. However, most approaches require a high degree of synchronization (distinct phases during learning) and introduce substantial computational overhead, which raises doubts regarding their biological plausibility as well as their potential utility for neuromorphic computing. Furthermore, they commonly rely on applying infinitesimal perturbations (nudges) to output units, which is impractical in noisy environments. Recently it has been shown that by modelling artificial neurons as dyads with two oppositely nudged compartments, it is possible for a fully local learning algorithm named ``dual propagation'' to bridge the performance gap to backpropagation, without requiring separate learning phases or infinitesimal nudging. However, the algorithm has the drawback that its numerical stability relies on symmetric nudging, which may be restrictive in biological and analog implementations. In this work we first provide a solid foundation for the objective underlying the dual propagation method, which also reveals a surprising connection with adversarial robustness. Second, we demonstrate how dual propagation is related to a particular adjoint state method, which is stable regardless of asymmetric nudging.
Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.
Counterfactual explanations provide a popular method for analyzing the predictions of black-box systems, and they can offer the opportunity for computational recourse by suggesting actionable changes on how to change the input to obtain a different (i.e. more favorable) system output. However, recent work highlighted their vulnerability to different types of manipulations. This work studies the vulnerability of counterfactual explanations to data poisoning. We formalize data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, or a sub-group of instances, or globally for all instances. We demonstrate that state-of-the-art counterfactual generation methods \& toolboxes are vulnerable to such data poisoning.
We study the Gaussian statistical models whose log-likelihood function has a unique complex critical point, i.e., has maximum likelihood degree one. We exploit the connection developed by Am\'endola et. al. between the models having maximum likelihood degree one and homaloidal polynomials. We study the spanning tree generating function of a graph and show this polynomial is homaloidal when the graph is chordal. When the graph is a cycle on $n$ vertices, $n \geq 4$, we prove the polynomial is not homaloidal, and show that the maximum likelihood degree of the resulting model is the $n$th Eulerian number. These results support our conjecture that the spanning tree generating function is a homaloidal polynomial if and only if the graph is chordal. We also provide an algebraic formulation for the defining equations of these models. Using existing results, we provide a computational study on constructing new families of homaloidal polynomials. In the end, we analyze the symmetric determinantal representation of such polynomials and provide an upper bound on the size of the matrices involved.
Correlation clustering is a well-known unsupervised learning setting that deals with positive and negative pairwise similarities. In this paper, we study the case where the pairwise similarities are not given in advance and must be queried in a cost-efficient way. Thereby, we develop a generic active learning framework for this task that benefits from several advantages, e.g., flexibility in the type of feedback that a user/annotator can provide, adaptation to any correlation clustering algorithm and query strategy, and robustness to noise. In addition, we propose and analyze a number of novel query strategies suited to this setting. We demonstrate the effectiveness of our framework and the proposed query strategies via several experimental studies.
Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models. In this work, we analyze their scaling properties, incorporating an expanded range of variables. Specifically, we introduce a new hyperparameter, granularity, whose adjustment enables precise control over the size of the experts. Building on this, we establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity. Leveraging these laws, we derive the optimal training configuration for a given computational budget. Our findings not only show that MoE models consistently outperform dense Transformers but also highlight that the efficiency gap between dense and MoE models widens as we scale up the model size and training budget. Furthermore, we demonstrate that the common practice of setting the size of experts in MoE to mirror the feed-forward layer is not optimal at almost any computational budget.
We provide a new approach to obtain solutions of certain evolution equations set in a Banach space and equipped with nonlocal boundary conditions. From this approach we derive a family of numerical schemes for the approximation of the solutions. We show by numerical tests that these schemes are numerically robust and computationally efficient.
We study the online learnability of hypothesis classes with respect to arbitrary, but bounded loss functions. No characterization of online learnability is known at this level of generality. We give a new scale-sensitive combinatorial dimension, named the sequential minimax dimension, and show that it gives a tight quantitative characterization of online learnability. In addition, we show that the sequential minimax dimension subsumes most existing combinatorial dimensions in online learning theory.
We propose to estimate the weight matrix used for forecast reconciliation as parameters in a general linear model in order to quantify its uncertainty. This implies that forecast reconciliation can be formulated as an orthogonal projection from the space of base-forecast errors into a coherent linear subspace. We use variance decomposition together with the Wishart distribution to derive the central estimator for the forecast-error covariance matrix. In addition, we prove that distance-reducing properties apply to the reconciled forecasts at all levels of the hierarchy as well as to the forecast-error covariance. A covariance matrix for the reconciliation weight matrix is derived, which leads to improved estimates of the forecast-error covariance matrix. We show how shrinkage can be introduced in the formulated model by imposing specific priors on the weight matrix and the forecast-error covariance matrix. The method is illustrated in a simulation study that shows consistent improvements in the log-score. Finally, standard errors for the weight matrix and the variance-separation formula are illustrated using a case study of forecasting electricity load in Sweden.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.