The problem of finding the connected components of a graph is considered. The algorithms addressed to solve the problem are used to solve such problems on graphs as problems of finding points of articulation, bridges, maximin bridge, etc. A natural approach to solving this problem is a breadth-first search, the implementations of which are presented in software libraries designed to maximize the use of the capabi\-lities of modern computer architectures. We present an approach using perturbations of adjacency matrix of a graph. We check wether the graph is connected or not by comparing the solutions of the two systems of linear algebraic equations (SLAE): the first SLAE with a perturbed adjacency matrix of the graph and the second SLAE with~unperturbed matrix. This approach makes it possible to use effective numerical implementations of SLAE solution methods to solve connectivity problems on graphs. Iterations of iterative numerical methods for solving such SLAE can be considered as carrying out a graph traversal. Generally speaking, the traversal is not equivalent to the traversal that is carried out with breadth-first search. An algorithm for finding the connected components of a graph using such a traversal is presented. For any instance of the problem, this algorithm has no greater computational complexity than breadth-first search, and for~most individual problems it has less complexity.
Replication studies are increasingly conducted to assess the credibility of scientific findings. Most of these replication attempts target studies with a superiority design, and there is a lack of methodology regarding the analysis of replication studies with alternative types of designs, such as equivalence. In order to fill this gap, we propose two approaches, the two-trials rule and the sceptical TOST procedure, adapted from methods used in superiority settings. Both methods have the same overall Type-I error rate, but the sceptical TOST procedure allows replication success even for non-significant original or replication studies. This leads to a larger project power and other differences in relevant operating characteristics. Both methods can be used for sample size calculation of the replication study, based on the results from the original one. The two methods are applied to data from the Reproducibility Project: Cancer Biology.
Many economic panel and dynamic models, such as rational behavior and Euler equations, imply that the parameters of interest are identified by conditional moment restrictions with high dimensional conditioning instruments. We develop a novel inference method for the parameters identified by conditional moment restrictions, where the dimension of the conditioning instruments is high and there is no prior information about which conditioning instruments are weak or irrelevant. Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection. Our method optimizes the asymptotic power against a set of $n^{-1/2}$-local alternatives of interest by solving a data-dependent max-min problem for tuning parameter selection. We demonstrate the efficacy of our method by two empirical examples: the elasticity of intertemporal substitution and rational unbiased reporting of ability status. Extensive Monte Carlo experiments based on the first empirical example show that our inference procedure is superior to those available in the literature in realistic settings.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
This study focuses on addressing the challenges of solving analytically intractable differential equations that arise in scientific and engineering fields such as Hamilton-Jacobi-Bellman. Traditional numerical methods and neural network approaches for solving such equations often require independent simulation or retraining when the underlying parameters change. To overcome this, this study employs a physics-informed DeepONet (PI-DeepONet) to approximate the solution operator of a nonlinear parabolic equation. PI-DeepONet integrates known physics into a deep neural network, which learns the solution of the PDE.
We propose a new way to assess certain short constructed responses to mathematics items. Our approach uses a pipeline that identifies the key values specified by the student in their response. This allows us to determine the correctness of the response, as well as identify any misconceptions. The information from the value identification pipeline can then be used to provide feedback to the teacher and student. The value identification pipeline consists of two fine-tuned language models. The first model determines if a value is implicit in the student response. The second model identifies where in the response the key value is specified. We consider both a generic model that can be used for any prompt and value, as well as models that are specific to each prompt and value. The value identification pipeline is a more accurate and informative way to assess short constructed responses than traditional rubric-based scoring. It can be used to provide more targeted feedback to students, which can help them improve their understanding of mathematics.
Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.
The distributed task allocation problem, as one of the most interesting distributed optimization challenges, has received considerable research attention recently. Previous works mainly focused on the task allocation problem in a population of individuals, where there are no constraints for affording task amounts. The latter condition, however, cannot always be hold. In this paper, we study the task allocation problem with constraints of task allocation in a game-theoretical framework. We assume that each individual can afford different amounts of task and the cost function is convex. To investigate the problem in the framework of population games, we construct a potential game and calculate the fitness function for each individual. We prove that when the Nash equilibrium point in the potential game is in the feasible solutions for the limited task allocation problem, the Nash equilibrium point is the unique globally optimal solution. Otherwise, we also derive analytically the unique globally optimal solution. In addition, in order to confirm our theoretical results, we consider the exponential and quadratic forms of cost function for each agent. Two algorithms with the mentioned representative cost functions are proposed to numerically seek the optimal solution to the limited task problems. We further perform Monte Carlo simulations which provide agreeing results with our analytical calculations.
The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.
In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the stepsize but a proper variance reduced version is missing. In this work, we propose the first study of variance reduction techniques for stochastic proximal point algorithms. We introduce a stochastic proximal version of SVRG, SAGA, and some of their variants for smooth and convex functions. We provide several convergence results for the iterates and the objective function values. In addition, under the Polyak-{\L}ojasiewicz (PL) condition, we obtain linear convergence rates for the iterates and the function values. Our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts, especially about the stability with respect to the choice of the step size.
Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.