亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online controlled experiments, such as A/B-tests, are commonly used by modern tech companies to enable continuous system improvements. Despite their paramount importance, A/B-tests are expensive: by their very definition, a percentage of traffic is assigned an inferior system variant. To ensure statistical significance on top-level metrics, online experiments typically run for several weeks. Even then, a considerable amount of experiments will lead to inconclusive results (i.e. false negatives, or type-II error). The main culprit for this inefficiency is the variance of the online metrics. Variance reduction techniques have been proposed in the literature, but their direct applicability to commonly used ratio metrics (e.g. click-through rate or user retention) is limited. In this work, we successfully apply variance reduction techniques to ratio metrics on a large-scale short-video platform: ShareChat. Our empirical results show that we can either improve A/B-test confidence in 77% of cases, or can retain the same level of confidence with 30% fewer data points. Importantly, we show that the common approach of including as many covariates as possible in regression is counter-productive, highlighting that control variates based on Gradient-Boosted Decision Tree predictors are most effective. We discuss the practicalities of implementing these methods at scale and showcase the cost reduction they beget.

相關內容

In surgical computer vision applications, obtaining labeled training data is challenging due to data-privacy concerns and the need for expert annotation. Unpaired image-to-image translation techniques have been explored to automatically generate large annotated datasets by translating synthetic images to the realistic domain. However, preserving the structure and semantic consistency between the input and translated images presents significant challenges, mainly when there is a distributional mismatch in the semantic characteristics of the domains. This study empirically investigates unpaired image translation methods for generating suitable data in surgical applications, explicitly focusing on semantic consistency. We extensively evaluate various state-of-the-art image translation models on two challenging surgical datasets and downstream semantic segmentation tasks. We find that a simple combination of structural-similarity loss and contrastive learning yields the most promising results. Quantitatively, we show that the data generated with this approach yields higher semantic consistency and can be used more effectively as training data.The code is available at //gitlab.com/nct_tso_public/constructs.

Context and motivation: Requirements engineering of complex IT systems needs to manage the many, and often vague and conflicting, organisational rules that exist in the context of a modern enterprise. At the same time, IT systems affect the organisation, essentially setting new rules on how the organisation should work. Question/problem: Gathering requirements for an IT system involves understanding the complex rules that govern an organisation. The research question is: How can the holistic properties of organisational rules be conceptualised? Principal ideas/results: This paper introduces the concept of organisational rule systems that may be used to describe complex organisational rules. The concept and its components are presented as a conceptual framework, which in turn is condensed into a conceptual framework diagram. The framework is grounded in a critical literature review. Contribution: The conceptual framework will, as a first step of a wider research agenda, help requirements engineers understand the influence of organisational rules.

More research attention has recently been given to end-to-end autonomous driving technologies where the entire driving pipeline is replaced with a single neural network because of its simpler structure and faster inference time. Despite this appealing approach largely reducing the components in the driving pipeline, its simplicity also leads to interpretability problems and safety issues. The trained policy is not always compliant with the traffic rules and it is also hard to discover the reason for the misbehavior because of the lack of intermediate outputs. Meanwhile, sensors are also critical to autonomous driving's security and feasibility to perceive the surrounding environment under complex driving scenarios. In this paper, we proposed P-CSG, a penalty-based imitation learning approach with cross semantics generation sensor fusion technologies to increase the overall performance of end-to-end autonomous driving. In this method, we introduce three penalties - red light, stop sign, and curvature speed penalty to make the agent more sensitive to traffic rules. The proposed cross semantics generation helps to align the shared information from different input modalities. We assessed our model's performance using the CARLA leaderboard - Town 05 Long benchmark and Longest6 Benchmark, achieving an impressive driving score improvement. Furthermore, we conducted robustness evaluations against adversarial attacks like FGSM and Dot attacks, revealing a substantial increase in robustness compared to baseline models. More detailed information, such as code base resources, and videos can be found at //hk-zh.github.io/p-csg-plus.

We propose a new joint mean and correlation regression model for correlated multivariate discrete responses, that simultaneously regresses the mean of each response against a set of covariates, and the correlations between responses against a set of similarity/distance measures. A set of joint estimating equations are formulated to construct an estimator of both the mean regression coefficients and the correlation regression parameters. Under a general setting where the number of responses can tend to infinity, the joint estimator is demonstrated to be consistent and asymptotically normally distributed, with differing rates of convergence due to the mean regression coefficients being heterogeneous across responses. An iterative estimation procedure is developed to obtain parameter estimates in the required, constrained parameter space. We apply the proposed model to a multivariate abundance dataset comprising overdispersed counts of 38 Carabidae ground beetle species sampled throughout Scotland, along with information about the environmental conditions of each site and the traits of each species. Results show in particular that the relationships between the mean abundances of various beetle species and environmental covariates are different and that beetle total length has statistically important effect in driving the correlations between the species. Simulations demonstrate the strong finite sample performance of the proposed estimator in terms of point estimation and inference.

Graphs are commonly used to model complex networks prevalent in modern social media and literacy applications. Our research investigates the vulnerability of these graphs through the application of feature based adversarial attacks, focusing on both decision-time attacks and poisoning attacks. In contrast to state-of-the-art models like Net Attack and Meta Attack, which target node attributes and graph structure, our study specifically targets node attributes. For our analysis, we utilized the text dataset Hellaswag and graph datasets Cora and CiteSeer, providing a diverse basis for evaluation. Our findings indicate that decision-time attacks using Projected Gradient Descent (PGD) are more potent compared to poisoning attacks that employ Mean Node Embeddings and Graph Contrastive Learning strategies. This provides insights for graph data security, pinpointing where graph-based models are most vulnerable and thereby informing the development of stronger defense mechanisms against such attacks.

Synthetic control (SC) methods have gained rapid popularity in economics recently, where they have been applied in the context of inferring the effects of treatments on standard continuous outcomes assuming linear input-output relations. In medical applications, conversely, survival outcomes are often of primary interest, a setup in which both commonly assumed data-generating processes (DGPs) and target parameters are different. In this paper, we therefore investigate whether and when SCs could serve as an alternative to matching methods in survival analyses. We find that, because SCs rely on a linearity assumption, they will generally be biased for the true expected survival time in commonly assumed survival DGPs -- even when taking into account the possibility of linearity on another scale as in accelerated failure time models. Additionally, we find that, because SC units follow distributions with lower variance than real control units, summaries of their distributions, such as survival curves, will be biased for the parameters of interest in many survival analyses. Nonetheless, we also highlight that using SCs can still improve upon matching whenever the biases described above are outweighed by extrapolation biases exhibited by imperfect matches, and investigate the use of regularization to trade off the shortcomings of both approaches.

Heterogeneous autonomous robot teams consisting of multirotor and uncrewed surface vessels (USVs) have the potential to enable various maritime applications, including advanced search-and-rescue operations. A critical requirement of these applications is the ability to land a multirotor on a USV for tasks such as recharging. This paper addresses the challenge of safely landing a multirotor on a cooperative USV in harsh open waters. To tackle this problem, we propose a novel sequential distributed model predictive control (MPC) scheme for cooperative multirotor-USV landing. Our approach combines standard tracking MPCs for the multirotor and USV with additional artificial intermediate goal locations. These artificial goals enable the robots to coordinate their cooperation without prior guidance. Each vehicle solves an individual optimization problem for both the artificial goal and an input that tracks it but only communicates the former to the other vehicle. The artificial goals are penalized by a suitable coupling cost. Furthermore, our proposed distributed MPC scheme utilizes a spatial-temporal wave model to coordinate in real-time a safer landing location and time the multirotor's landing to limit severe tilt of the USV.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司