While analogies are a common way to evaluate word embeddings in NLP, it is also of interest to investigate whether or not analogical reasoning is a task in itself that can be learned. In this paper, we test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans than those in commonly used NLP benchmarks. Our experiments find that models are able to learn analogical reasoning, even with a small amount of data. We additionally compare our models to a dataset with a human baseline, and find that after training, models approach human performance.
There is a recent boom in the development of AI solutions to facilitate and enhance diagnostic procedures for established clinical tools. To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in the diagnosis of neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors. These approaches are hardly comparable as all models are designed, trained and evaluated on proprietary/ silo-data sets. We propose a sensor fusion approach for assessing fidgety movements (FMs) comparing three different sensor modalities (pressure, inertial, and visual sensors). Various combinations and two sensor fusion approaches (late and early fusion) for infant movement classification were tested to evaluate whether a multi-sensor system outperforms single modality assessments. The performance of the three-sensor fusion (classification accuracy of 94.5\%) was significantly higher than that of any single modality evaluated, suggesting the sensor fusion approach is a promising avenue for automated classification of infant motor patterns. The development of a robust sensor fusion system may significantly enhance AI-based early recognition of neurofunctions, ultimately facilitating early implementation of automated detection of neurodevelopmental conditions.
A Riemannian geometric framework for Markov chain Monte Carlo (MCMC) is developed where using the Fisher-Rao metric on the manifold of probability density functions (pdfs) informed proposal densities for Metropolis-Hastings (MH) algorithms are constructed. We exploit the square-root representation of pdfs under which the Fisher-Rao metric boils down to the standard $L^2$ metric on the positive orthant of the unit hypersphere. The square-root representation allows us to easily compute the geodesic distance between densities, resulting in a straightforward implementation of the proposed geometric MCMC methodology. Unlike the random walk MH that blindly proposes a candidate state using no information about the target, the geometric MH algorithms effectively move an uninformed base density (e.g., a random walk proposal density) towards different global/local approximations of the target density. We compare the proposed geometric MH algorithm with other MCMC algorithms for various Markov chain orderings, namely the covariance, efficiency, Peskun, and spectral gap orderings. The superior performance of the geometric algorithms over other MH algorithms like the random walk Metropolis, independent MH and variants of Metropolis adjusted Langevin algorithms is demonstrated in the context of various multimodal, nonlinear and high dimensional examples. In particular, we use extensive simulation and real data applications to compare these algorithms for analyzing mixture models, logistic regression models and ultra-high dimensional Bayesian variable selection models. A publicly available R package accompanies the article.
Estimating the sharing of genetic effects across different conditions is important to many statistical analyses of genomic data. The patterns of sharing arising from these data are often highly heterogeneous. To flexibly model these heterogeneous sharing patterns, Urbut et al. (2019) proposed the multivariate adaptive shrinkage (MASH) method to jointly analyze genetic effects across multiple conditions. However, multivariate analyses using MASH (as well as other multivariate analyses) require good estimates of the sharing patterns, and estimating these patterns efficiently and accurately remains challenging. Here we describe new empirical Bayes methods that provide improvements in speed and accuracy over existing methods. The two key ideas are: (1) adaptive regularization to improve accuracy in settings with many conditions; (2) improving the speed of the model fitting algorithms by exploiting analytical results on covariance estimation. In simulations, we show that the new methods provide better model fits, better out-of-sample performance, and improved power and accuracy in detecting the true underlying signals. In an analysis of eQTLs in 49 human tissues, our new analysis pipeline achieves better model fits and better out-of-sample performance than the existing MASH analysis pipeline. We have implemented the new methods, which we call ``Ultimate Deconvolution'', in an R package, udr, available on GitHub.
Relative belief inferences are shown to arise as Bayes rules or limiting Bayes rules. These inferences are invariant under reparameterizations and possess a number of optimal properties. In particular, relative belief inferences are based on a direct measure of statistical evidence.
This paper introduces the Lagrange Policy for Continuous Actions (LPCA), a reinforcement learning algorithm specifically designed for weakly coupled MDP problems with continuous action spaces. LPCA addresses the challenge of resource constraints dependent on continuous actions by introducing a Lagrange relaxation of the weakly coupled MDP problem within a neural network framework for Q-value computation. This approach effectively decouples the MDP, enabling efficient policy learning in resource-constrained environments. We present two variations of LPCA: LPCA-DE, which utilizes differential evolution for global optimization, and LPCA-Greedy, a method that incrementally and greadily selects actions based on Q-value gradients. Comparative analysis against other state-of-the-art techniques across various settings highlight LPCA's robustness and efficiency in managing resource allocation while maximizing rewards.
In this paper, we formulate, analyse and implement the discrete formulation of the Brinkman problem with mixed boundary conditions, including slip boundary condition, using the Nitsche's technique for virtual element methods. The divergence conforming virtual element spaces for the velocity function and piecewise polynomials for pressure are approached for the discrete scheme. We derive a robust stability analysis of the Nitsche stabilized discrete scheme for this model problem. We establish an optimal and vigorous a priori error estimates of the discrete scheme with constants independent of the viscosity. Moreover, a set of numerical tests demonstrates the robustness with respect to the physical parameters and verifies the derived convergence results.
Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.
Acoustic context effects, where surrounding changes in pitch, rate or timbre influence the perception of a sound, are well documented in speech perception, but how they interact with language background remains unclear. Using a reverse-correlation approach, we systematically varied the pitch and speech rate in phrases around different pairs of vowels for second language (L2) speakers of English (/i/-/I/) and French (/u/-/y/), thus reconstructing, in a data-driven manner, the prosodic profiles that bias their perception. Testing English and French speakers (n=25), we showed that vowel perception is in fact influenced by conflicting effects from the surrounding pitch and speech rate: a congruent proximal effect 0.2s pre-target and a distal contrastive effect up to 1s before; and found that L1 and L2 speakers exhibited strikingly similar prosodic profiles in perception. We provide a novel method to investigate acoustic context effects across stimuli, timescales, and acoustic domain.
The decisions of individuals and organizations are often suboptimal because normative decision strategies are too demanding in the real world. Recent work suggests that some errors can be prevented by leveraging artificial intelligence to discover and teach prescriptive decision strategies that take people's constraints into account. So far, this line of research has been limited to simplified decision problems. This article is the first to extend this approach to a real-world decision problem, namely project selection. We develop a computational method (MGPS) that automatically discovers project selection strategies that are optimized for real people and develop an intelligent tutor that teaches the discovered strategies. We evaluated MGPS on a computational benchmark and tested the intelligent tutor in a training experiment with two control conditions. MGPS outperformed a state-of-the-art method and was more computationally efficient. Moreover, the intelligent tutor significantly improved people's decision strategies. Our results indicate that our method can improve human decision-making in naturalistic settings similar to real-world project selection, a first step towards applying strategy discovery to the real world.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.