Consider a set of points sampled independently near a smooth compact submanifold of Euclidean space. We provide mathematically rigorous bounds on the number of sample points required to estimate both the dimension and the tangent spaces of that manifold with high confidence. The algorithm for this estimation is Local PCA, a local version of principal component analysis. Our results accommodate for noisy non-uniform data distribution with the noise that may vary across the manifold, and allow simultaneous estimation at multiple points. Crucially, all of the constants appearing in our bound are explicitly described. The proof uses a matrix concentration inequality to estimate covariance matrices and a Wasserstein distance bound for quantifying nonlinearity of the underlying manifold and non-uniformity of the probability measure.
In this paper, we propose and study a fast multilevel dimension iteration (MDI) algorithm for computing arbitrary $d$-dimensional integrals based on tensor product approximations. It reduces the computational complexity (in terms of the CPU time) of a tensor product method from the exponential order $O(N^d)$ to the polynomial order {\color{black} $O(d^3N^2)$ or better}, where $N$ stands for the number of quadrature points in each coordinate direction. As a result, the proposed MDI algorithm effectively circumvents the curse of the dimensionality of tensor product methods for high dimensional numerical integration. The main idea of the proposed MDI algorithm is to compute the function evaluations at all integration points in the cluster and iteratively along each coordinate direction, so lots of computations for function evaluations can be reused in each iteration. This idea is also applicable to any quadrature rule whose integration points have a lattice-like structure.
Recovering linear subspaces from data is a fundamental and important task in statistics and machine learning. Motivated by heterogeneity in Federated Learning settings, we study a basic formulation of this problem: the principal component analysis (PCA), with a focus on dealing with irregular noise. Our data come from $n$ users with user $i$ contributing data samples from a $d$-dimensional distribution with mean $\mu_i$. Our goal is to recover the linear subspace shared by $\mu_1,\ldots,\mu_n$ using the data points from all users, where every data point from user $i$ is formed by adding an independent mean-zero noise vector to $\mu_i$. If we only have one data point from every user, subspace recovery is information-theoretically impossible when the covariance matrices of the noise vectors can be non-spherical, necessitating additional restrictive assumptions in previous work. We avoid these assumptions by leveraging at least two data points from each user, which allows us to design an efficiently-computable estimator under non-spherical and user-dependent noise. We prove an upper bound for the estimation error of our estimator in general scenarios where the number of data points and amount of noise can vary across users, and prove an information-theoretic error lower bound that not only matches the upper bound up to a constant factor, but also holds even for spherical Gaussian noise. This implies that our estimator does not introduce additional estimation error (up to a constant factor) due to irregularity in the noise. We show additional results for a linear regression problem in a similar setup.
We consider the problem of finding the matching map between two sets of $d$-dimensional noisy feature-vectors. The distinctive feature of our setting is that we do not assume that all the vectors of the first set have their corresponding vector in the second set. If $n$ and $m$ are the sizes of these two sets, we assume that the matching map that should be recovered is defined on a subset of unknown cardinality $k^*\le \min(n,m)$. We show that, in the high-dimensional setting, if the signal-to-noise ratio is larger than $5(d\log(4nm/\alpha))^{1/4}$, then the true matching map can be recovered with probability $1-\alpha$. Interestingly, this threshold does not depend on $k^*$ and is the same as the one obtained in prior work in the case of $k = \min(n,m)$. The procedure for which the aforementioned property is proved is obtained by a data-driven selection among candidate mappings $\{\hat\pi_k:k\in[\min(n,m)]\}$. Each $\hat\pi_k$ minimizes the sum of squares of distances between two sets of size $k$. The resulting optimization problem can be formulated as a minimum-cost flow problem, and thus solved efficiently. Finally, we report the results of numerical experiments on both synthetic and real-world data that illustrate our theoretical results and provide further insight into the properties of the algorithms studied in this work.
Given a stream of Bernoulli random variables, consider the problem of estimating the mean of the random variable within a specified relative error with a specified probability of failure. Until now, the Gamma Bernoulli Approximation Scheme (GBAS) was the method that accomplished this goal using the smallest number of average samples. In this work, a new method is introduced that is faster when the mean is bounded away from zero. The process uses a two-stage process together with some simple inequalities to get rigorous bounds on the error probability.
An important problem in extreme-value theory is the estimation of the probability that a high-dimensional random vector falls into a given extreme failure set. This paper provides a parametric approach to this problem, based on a generalization of the tail pairwise dependence matrix (TPDM). The TPDM gives a partial summary of tail dependence for all pairs of components of the random vector. We propose an algorithm to obtain an approximate completely positive decomposition of the TPDM. The decomposition is easy to compute and applicable to moderate to high dimensions. Based on the decomposition, we obtain parameters estimates of a max-linear model whose TPDM is equal to that of the original random vector. We apply the proposed decomposition algorithm to industry portfolio returns and maximal wind speeds to illustrate its applicability.
Solving Fredholm equations of the first kind is crucial in many areas of the applied sciences. In this work we adopt a probabilistic and variational point of view by considering a minimization problem in the space of probability measures with an entropic regularization. Contrary to classical approaches which discretize the domain of the solutions, we introduce an algorithm to asymptotically sample from the unique solution of the regularized minimization problem. As a result our estimators do not depend on any underlying grid and have better scalability properties than most existing methods. Our algorithm is based on a particle approximation of the solution of a McKean--Vlasov stochastic differential equation associated with the Wasserstein gradient flow of our variational formulation. We prove the convergence towards a minimizer and provide practical guidelines for its numerical implementation. Finally, our method is compared with other approaches on several examples including density deconvolution and epidemiology.
Reliably estimating the uncertainty of a prediction throughout the model lifecycle is crucial in many safety-critical applications. The most common way to measure this uncertainty is via the predicted confidence. While this tends to work well for in-domain samples, these estimates are unreliable under domain drift. Alternatively, a bias-variance decomposition allows to directly measure the predictive uncertainty across the entire input space. But, such a decomposition for proper scores does not exist in current literature, and for exponential families it is convoluted. In this work, we introduce a general bias-variance decomposition for proper scores and reformulate the exponential family case, giving rise to the Bregman Information as the variance term in both cases. This allows us to prove that the Bregman Information for classification measures the uncertainty in the logit space. We showcase the practical relevance of this decomposition on two downstream tasks. First, we show how to construct confidence intervals for predictions on the instance-level based on the Bregman Information. Second, we demonstrate how different approximations of the instance-level Bregman Information allow reliable out-of-distribution detection for all degrees of domain drift.
Wasserstein dictionary learning is an unsupervised approach to learning a collection of probability distributions that generate observed distributions as Wasserstein barycentric combinations. Existing methods for Wasserstein dictionary learning optimize an objective that seeks a dictionary with sufficient representation capacity via barycentric interpolation to approximate the observed training data, but without imposing additional structural properties on the coefficients associated to the dictionary. This leads to dictionaries that densely represent the observed data, which makes interpretation of the coefficients challenging and may also lead to poor empirical performance when using the learned coefficients in downstream tasks. In contrast and motivated by sparse dictionary learning in Euclidean spaces, we propose a geometrically sparse regularizer for Wasserstein space that promotes representations of a data point using only nearby dictionary elements. We show this approach leads to sparse representations in Wasserstein space and addresses the problem of non-uniqueness of barycentric representation. Moreover, when data is generated as Wasserstein barycenters of fixed distributions, this regularizer facilitates the recovery of the generating distributions in cases that are ill-posed for unregularized Wasserstein dictionary learning. Through experimentation on synthetic and real data, we show that our geometrically regularized approach yields sparser and more interpretable dictionaries in Wasserstein space, which perform better in downstream applications.
This study presents a theoretical structure for the monocular pose estimation problem using the total least squares. The unit-vector line-of-sight observations of the features are extracted from the monocular camera images. First, the optimization framework is formulated for the pose estimation problem with observation vectors extracted from unit vectors from the camera center-of-projection, pointing towards the image features. The attitude and position solutions obtained via the derived optimization framework are proven to reach the Cram\'er-Rao lower bound under the small angle approximation of the attitude errors. Specifically, The Fisher Information Matrix and the Cram\'er-Rao bounds are evaluated and compared to the analytical derivations of the error-covariance expressions to rigorously prove the optimality of the estimates. The sensor data for the measurement model is provided through a series of vector observations, and two fully populated noise-covariance matrices are assumed for the body and reference observation data. The inverse of the former matrices appear in terms of a series of weight matrices in the cost function. The proposed solution is simulated in a Monte-Carlo framework with 10,000 samples to validate the error-covariance analysis.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.