亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies a near-field multiple-input multiple-output (MIMO) radar sensing system, in which the transceivers with massive antennas aim to localize multiple near-field targets in the three-dimensional (3D) space over unknown cluttered environments. We consider a spherical wavefront propagation with both channel phase and amplitude variations over different antennas. Under this setup, the unknown parameters include the 3D coordinates and complex reflection coefficients of the targets, as well as the noise and interference covariance matrix. First, by considering general transmit signal waveforms, we derive the Fisher information matrix (FIM) corresponding to the 3D coordinates and the complex reflection coefficients of the targets and accordingly obtain the Cram\'er-Rao bound (CRB) for the 3D coordinates. This provides a performance bound for 3D near-field target localization. For the special single-target case, we obtain the CRB in an analytical form, and analyze its asymptotic scaling behaviors with respect to the target distance and antenna size of the transceiver. Next, to facilitate practical localization, we propose two estimators to localize targets based on the maximum likelihood (ML) criterion, namely the 3D approximate cyclic optimization (3D-ACO) and the 3D cyclic optimization with white Gaussian noise (3D-CO-WGN), respectively. Numerical results validate the asymptotic CRB analysis and show that the consideration of varying channel amplitudes is vital to achieve accurate CRB and localization when the targets are close to the transceivers. It is also shown that the proposed estimators achieve localization performance close to the derived CRB under various cluttered environments, thus validating their effectiveness in practical implementation. Furthermore, it is shown that transmit waveforms have a significant impact on CRB and the localization performance.

相關內容

Artificial neural networks (ANNs) exhibit a narrow scope of expertise on stationary independent data. However, the data in the real world is continuous and dynamic, and ANNs must adapt to novel scenarios while also retaining the learned knowledge to become lifelong learners. The ability of humans to excel at these tasks can be attributed to multiple factors ranging from cognitive computational structures, cognitive biases, and the multi-memory systems in the brain. We incorporate key concepts from each of these to design a novel framework, Dual Cognitive Architecture (DUCA), which includes multiple sub-systems, implicit and explicit knowledge representation dichotomy, inductive bias, and a multi-memory system. The inductive bias learner within DUCA is instrumental in encoding shape information, effectively countering the tendency of ANNs to learn local textures. Simultaneously, the inclusion of a semantic memory submodule facilitates the gradual consolidation of knowledge, replicating the dynamics observed in fast and slow learning systems, reminiscent of the principles underpinning the complementary learning system in human cognition. DUCA shows improvement across different settings and datasets, and it also exhibits reduced task recency bias, without the need for extra information. To further test the versatility of lifelong learning methods on a challenging distribution shift, we introduce a novel domain-incremental dataset DN4IL. In addition to improving performance on existing benchmarks, DUCA also demonstrates superior performance on this complex dataset.

Gradient-based methods enable efficient search capabilities in high dimensions. However, in order to apply them effectively in offline optimization paradigms such as offline Reinforcement Learning (RL) or Imitation Learning (IL), we require a more careful consideration of how uncertainty estimation interplays with first-order methods that attempt to minimize them. We study smoothed distance to data as an uncertainty metric, and claim that it has two beneficial properties: (i) it allows gradient-based methods that attempt to minimize uncertainty to drive iterates to data as smoothing is annealed, and (ii) it facilitates analysis of model bias with Lipschitz constants. As distance to data can be expensive to compute online, we consider settings where we need amortize this computation. Instead of learning the distance however, we propose to learn its gradients directly as an oracle for first-order optimizers. We show these gradients can be efficiently learned with score-matching techniques by leveraging the equivalence between distance to data and data likelihood. Using this insight, we propose Score-Guided Planning (SGP), a planning algorithm for offline RL that utilizes score-matching to enable first-order planning in high-dimensional problems, where zeroth-order methods were unable to scale, and ensembles were unable to overcome local minima. Website: //sites.google.com/view/score-guided-planning/home

Previous zero-shot dialogue state tracking (DST) methods only apply transfer learning, but ignore unlabelled data in the target domain. We transform zero-shot DST into few-shot DST by utilising such unlabelled data via joint and self-training methods. Our method incorporates auxiliary tasks that generate slot types as inverse prompts for main tasks, creating slot values during joint training. Cycle consistency between these two tasks enables the generation and selection of quality samples in unknown target domains for subsequent fine-tuning. This approach also facilitates automatic label creation, thereby optimizing the training and fine-tuning of DST models. We demonstrate this method's effectiveness on large language models in zero-shot scenarios, improving average joint goal accuracy by $8\%$ across all domains in MultiWOZ.

Interacting with the actual environment to acquire data is often costly and time-consuming in robotic tasks. Model-based offline reinforcement learning (RL) provides a feasible solution. On the one hand, it eliminates the requirements of interaction with the actual environment. On the other hand, it learns the transition dynamics and reward function from the offline datasets and generates simulated rollouts to accelerate training. Previous model-based offline RL methods adopt probabilistic ensemble neural networks (NN) to model aleatoric uncertainty and epistemic uncertainty. However, this results in an exponential increase in training time and computing resource requirements. Furthermore, these methods are easily disturbed by the accumulative errors of the environment dynamics models when simulating long-term rollouts. To solve the above problems, we propose an uncertainty-aware sequence modeling architecture called Environment Transformer. It models the probability distribution of the environment dynamics and reward function to capture aleatoric uncertainty and treats epistemic uncertainty as a learnable noise parameter. Benefiting from the accurate modeling of the transition dynamics and reward function, Environment Transformer can be combined with arbitrary planning, dynamics programming, or policy optimization algorithms for offline RL. In this case, we perform Conservative Q-Learning (CQL) to learn a conservative Q-function. Through simulation experiments, we demonstrate that our method achieves or exceeds state-of-the-art performance in widely studied offline RL benchmarks. Moreover, we show that Environment Transformer's simulated rollout quality, sample efficiency, and long-term rollout simulation capability are superior to those of previous model-based offline RL methods.

We present a flexible data-driven method for dynamical system analysis that does not require explicit model discovery. The method is rooted in well-established techniques for approximating the Koopman operator from data and is implemented as a semidefinite program that can be solved numerically. Furthermore, the method is agnostic of whether data is generated through a deterministic or stochastic process, so its implementation requires no prior adjustments by the user to accommodate these different scenarios. Rigorous convergence results justify the applicability of the method, while also extending and uniting similar results from across the literature. Examples on discovering Lyapunov functions, performing ergodic optimization, and bounding extrema over attractors for both deterministic and stochastic dynamics exemplify these convergence results and demonstrate the performance of the method.

In many real-world problems, predictions are leveraged to monitor and control cyber-physical systems, demanding guarantees on the satisfaction of reliability and safety requirements. However, predictions are inherently uncertain, and managing prediction uncertainty presents significant challenges in environments characterized by complex dynamics and forking trajectories. In this work, we assume access to a pre-designed probabilistic implicit or explicit sequence model, which may have been obtained using model-based or model-free methods. We introduce probabilistic time series-conformal risk prediction (PTS-CRC), a novel post-hoc calibration procedure that operates on the predictions produced by any pre-designed probabilistic forecaster to yield reliable error bars. In contrast to existing art, PTS-CRC produces predictive sets based on an ensemble of multiple prototype trajectories sampled from the sequence model, supporting the efficient representation of forking uncertainties. Furthermore, unlike the state of the art, PTS-CRC can satisfy reliability definitions beyond coverage. This property is leveraged to devise a novel model predictive control (MPC) framework that addresses open-loop and closed-loop control problems under general average constraints on the quality or safety of the control policy. We experimentally validate the performance of PTS-CRC prediction and control by studying a number of use cases in the context of wireless networking. Across all the considered tasks, PTS-CRC predictors are shown to provide more informative predictive sets, as well as safe control policies with larger returns.

Data-driven deep learning methods have shown great potential in cropland mapping. However, due to multiple factors such as attributes of cropland (topography, climate, crop type) and imaging conditions (viewing angle, illumination, scale), croplands under different scenes demonstrate a great domain gap. This makes it difficult for models trained in the specific scenes to directly generalize to other scenes. A common way to handle this problem is through the "Pretrain+Fine-tuning" paradigm. Unfortunately, considering the variety of features of cropland that are affected by multiple factors, it is hardly to handle the complex domain gap between pre-trained data and target data using only sparse fine-tuned samples as general constraints. Moreover, as the number of model parameters grows, fine-tuning is no longer an easy and low-cost task. With the emergence of prompt learning via visual foundation models, the "Pretrain+Prompting" paradigm redesigns the optimization target by introducing individual prompts for each single sample. This simplifies the domain adaption from generic to specific scenes during model reasoning processes. Therefore, we introduce the "Pretrain+Prompting" paradigm to interpreting cropland scenes and design the auto-prompting (APT) method based on freely available global land cover product. It can achieve a fine-grained adaptation process from generic scenes to specialized cropland scenes without introducing additional label costs. To our best knowledge, this work pioneers the exploration of the domain adaption problems for cropland mapping under prompt learning perspectives. Our experiments using two sub-meter cropland datasets from southern and northern China demonstrated that the proposed method via visual foundation models outperforms traditional supervised learning and fine-tuning approaches in the field of remote sensing.

Collaborative autonomous multi-agent systems covering a specified area have many potential applications, such as UAV search and rescue, forest fire fighting, and real-time high-resolution monitoring. Traditional approaches for such coverage problems involve designing a model-based control policy based on sensor data. However, designing model-based controllers is challenging, and the state-of-the-art classical control policy still exhibits a large degree of sub-optimality. In this paper, we present a reinforcement learning (RL) approach for the multi-agent efficient domain coverage problem involving agents with second-order dynamics. Our approach is based on the Multi-Agent Proximal Policy Optimization Algorithm (MAPPO). Our proposed network architecture includes the incorporation of LSTM and self-attention, which allows the trained policy to adapt to a variable number of agents. Our trained policy significantly outperforms the state-of-the-art classical control policy. We demonstrate our proposed method in a variety of simulated experiments.

The availability of real-time semantics greatly improves the core geometric functionality of SLAM systems, enabling numerous robotic and AR/VR applications. We present a new methodology for real-time semantic mapping from RGB-D sequences that combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping. When segmenting a new frame we perform latent feature re-projection from previous frames based on differentiable rendering. Fusing re-projected feature maps from previous frames with current-frame features greatly improves image segmentation quality, compared to a baseline that processes images independently. For 3D map processing, we propose a novel geometric quasi-planar over-segmentation method that groups 3D map elements likely to belong to the same semantic classes, relying on surface normals. We also describe a novel neural network design for lightweight semantic map post-processing. Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems and matches the performance of 3D convolutional networks on three real indoor datasets, while working in real-time. Moreover, it shows better cross-sensor generalization abilities compared to 3D CNNs, enabling training and inference with different depth sensors. Code and data will be released on project page: //jingwenwang95.github.io/SeMLaPS

Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.

北京阿比特科技有限公司