Objective: We aimed to develop a dependable reliable tool for assessing software ageappropriateness. Methods: We conducted a systematic review to get the indicators of technology ageappropriateness from studies from January 2000 to April 2023.This study engaged 25 experts from the fields of anthropology, sociology,and social technology research across, three rounds of Delphi consultations were conducted. Experts were asked to screen, assess, add and provide feedback on the preliminary indicators identified in the initial indicator pool. Result: We found 76 criterias for evaluating quality criteria was extracted, grouped into 11 distinct domains. After completing three rounds of Delphi consultations,experts drew upon their personal experiences,theoretical frameworks,and industry insights to arrive at a three-dimensional structure for the evaluation tooluser experience,product quality,and social promotion.These metrics were further distilled into a 16-item scale, and a corresponding questionnaire was formulated.The developed tool exhibited strong internal reliability(Cronbach's Alpha is 0.867)and content validity(S-CVI is 0.93). Conclusion: This tool represents a straightforward,objective,and reliable mechanism for evaluating software's appropriateness across age groups. Moreover,it offers valuable insights and practical guidance for designing and developing of high-quality age-appropriate software,and assisst age groups to select software they like.
Metaverse technologies demand accurate, real-time, and immersive modeling on consumer-grade hardware for both non-human perception (e.g., drone/robot/autonomous car navigation) and immersive technologies like AR/VR, requiring both structural accuracy and photorealism. However, there exists a knowledge gap in how to apply geometric reconstruction and photorealism modeling (novel view synthesis) in a unified framework. To address this gap and promote the development of robust and immersive modeling and rendering with consumer-grade devices, we propose a real-world Multi-Sensor Hybrid Room Dataset (MuSHRoom). Our dataset presents exciting challenges and requires state-of-the-art methods to be cost-effective, robust to noisy data and devices, and can jointly learn 3D reconstruction and novel view synthesis instead of treating them as separate tasks, making them ideal for real-world applications. We benchmark several famous pipelines on our dataset for joint 3D mesh reconstruction and novel view synthesis. Our dataset and benchmark show great potential in promoting the improvements for fusing 3D reconstruction and high-quality rendering in a robust and computationally efficient end-to-end fashion. The dataset and code are available at the project website: //xuqianren.github.io/publications/MuSHRoom/.
We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.
The Segment Anything Model (SAM) has recently emerged as a groundbreaking foundation model for prompt-driven image segmentation tasks. However, both the original SAM and its medical variants require slice-by-slice manual prompting of target structures, which directly increase the burden for applications. Despite attempts of auto-prompting to turn SAM into a fully automatic manner, it still exhibits subpar performance and lacks of reliability especially in the field of medical imaging. In this paper, we propose UR-SAM, an uncertainty rectified SAM framework to enhance the reliability for auto-prompting medical image segmentation. Building upon a localization framework for automatic prompt generation, our method incorporates a prompt augmentation module to obtain a series of input prompts for SAM for uncertainty estimation and an uncertainty-based rectification module to further utilize the distribution of estimated uncertainty to improve the segmentation performance. Extensive experiments on two public 3D medical datasets covering the segmentation of 35 organs demonstrate that without supplementary training or fine-tuning, our method further improves the segmentation performance with up to 10.7 % and 13.8 % in dice similarity coefficient, demonstrating efficiency and broad capabilities for medical image segmentation without manual prompting.
To improve privacy and ensure quality-of-service (QoS), deep learning (DL) models are increasingly deployed on Internet of Things (IoT) devices for data processing, significantly increasing the carbon footprint associated with DL on IoT, covering both operational and embodied aspects. Existing operational energy predictors often overlook quantized DL models and emerging neural processing units (NPUs), while embodied carbon footprint modeling tools neglect non-computing hardware components common in IoT devices, creating a gap in accurate carbon footprint modeling tools for IoT-enabled DL. This paper introduces \textit{\carb}, an end-to-end modeling tool for precise carbon footprint estimation in IoT-enabled DL, demonstrating a maximum $\pm21\%$ deviation in carbon footprint values compared to actual measurements across various DL models. Additionally, practical applications of \carb are showcased through multiple user case studies.
Connectivity is a main driver for the ongoing megatrend of automated mobility: future Cooperative Intelligent Transport Systems (C-ITS) will connect road vehicles, traffic signals, roadside infrastructure, and even vulnerable road users, sharing data and compute for safer, more efficient, and more comfortable mobility. In terms of communication technology for realizing such vehicle-to-everything (V2X) communication, the WLAN-based peer-to-peer approach (IEEE 802.11p, ITS-G5 in Europe) competes with C-V2X based on cellular technologies (4G and beyond). Irrespective of the underlying communication standard, common message interfaces are crucial for a common understanding between vehicles, especially from different manufacturers. Targeting this issue, the European Telecommunications Standards Institute (ETSI) has been standardizing V2X message formats such as the Cooperative Awareness Message (CAM). In this work, we present V2AIX, a multi-modal real-world dataset of ETSI ITS messages gathered in public road traffic, the first of its kind. Collected in measurement drives and with stationary infrastructure, we have recorded more than 230 000 V2X messages from more than 1800 vehicles and roadside units in public road traffic. Alongside a first analysis of the dataset, we present a way of integrating ETSI ITS V2X messages into the Robot Operating System (ROS). This enables researchers to not only thoroughly analyze real-world V2X data, but to also study and implement standardized V2X messages in ROS-based automated driving applications. The full dataset is publicly available for noncommercial use at v2aix.ika.rwth-aachen.de.
Large language models (LLMs) have shown excellent performance on various NLP tasks. To use LLMs as strong sequential recommenders, we explore the in-context learning approach to sequential recommendation. We investigate the effects of instruction format, task consistency, demonstration selection, and number of demonstrations. As increasing the number of demonstrations in ICL does not improve accuracy despite using a long prompt, we propose a novel method called LLMSRec-Syn that incorporates multiple demonstration users into one aggregated demonstration. Our experiments on three recommendation datasets show that LLMSRec-Syn outperforms state-of-the-art LLM-based sequential recommendation methods. In some cases, LLMSRec-Syn can perform on par with or even better than supervised learning methods. Our code is publicly available at //github.com/demoleiwang/LLMSRec_Syn.
Cybersecurity information is often technically complex and relayed through unstructured text, making automation of cyber threat intelligence highly challenging. For such text domains that involve high levels of expertise, pretraining on in-domain corpora has been a popular method for language models to obtain domain expertise. However, cybersecurity texts often contain non-linguistic elements (such as URLs and hash values) that could be unsuitable with the established pretraining methodologies. Previous work in other domains have removed or filtered such text as noise, but the effectiveness of these methods have not been investigated, especially in the cybersecurity domain. We propose different pretraining methodologies and evaluate their effectiveness through downstream tasks and probing tasks. Our proposed strategy (selective MLM and jointly training NLE token classification) outperforms the commonly taken approach of replacing non-linguistic elements (NLEs). We use our domain-customized methodology to train CyBERTuned, a cybersecurity domain language model that outperforms other cybersecurity PLMs on most tasks.
Kernel ridge regression (KRR) is widely used for nonparametric regression over reproducing kernel Hilbert spaces. It offers powerful modeling capabilities at the cost of significant computational costs, which typically require $O(n^3)$ computational time and $O(n^2)$ storage space, with the sample size n. We introduce a novel framework of multi-layer kernel machines that approximate KRR by employing a multi-layer structure and random features, and study how the optimal number of random features and layer sizes can be chosen while still preserving the minimax optimality of the approximate KRR estimate. For various classes of random features, including those corresponding to Gaussian and Matern kernels, we prove that multi-layer kernel machines can achieve $O(n^2\log^2n)$ computational time and $O(n\log^2n)$ storage space, and yield fast and minimax optimal approximations to the KRR estimate for nonparametric regression. Moreover, we construct uncertainty quantification for multi-layer kernel machines by using conformal prediction techniques with robust coverage properties. The analysis and theoretical predictions are supported by simulations and real data examples.
The presence of toxic and gender-identity derogatory language in open-source software (OSS) communities has recently become a focal point for researchers. Such comments not only lead to frustration and disengagement among developers but may also influence their leave from the OSS projects. Despite ample evidence suggesting that diverse teams enhance productivity, the existence of toxic or gender identity discriminatory communications poses a significant threat to the participation of individuals from marginalized groups and, as such, may act as a barrier to fostering diversity and inclusion in OSS projects. However, there is a notable lack of research dedicated to exploring the association between gender-based toxic and derogatory language with a perceptible diversity of open-source software teams. Consequently, this study aims to investigate how such content influences the gender, ethnicity, and tenure diversity of open-source software development teams. To achieve this, we extract data from active GitHub projects, assess various project characteristics, and identify instances of toxic and gender-discriminatory language within issue/pull request comments. Using these attributes, we construct a regression model to explore how they associate with the perceptible diversity of those projects.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.