亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapidly growing interest in quantum computing also grows the importance of securing these quantum computers from various physical attacks. Constantly increasing qubit counts and improvements to the fidelity of the quantum computers hold great promise for the ability of these computers to run novel algorithms with highly sensitive intellectual property. However, in today's cloud-based quantum computer setting, users lack physical control over the computers. Physical attacks, such as those perpetrated by malicious insiders in data centers, could be used to extract sensitive information about the circuits being executed on these computers. Indeed, this work shows for the first time that power-based side-channel attacks could be deployed against quantum computers. Such attacks can be used to recover information about the control pulses sent to these computers. By analyzing these control pulses, attackers can reverse-engineer the equivalent gate-level description of the circuits, and possibly even the secret algorithms being run. This work introduces five new types of attacks, and evaluates them using control pulse information available from cloud-based quantum computers. This work demonstrates how and what circuits could be recovered, and then in turn how to defend from the newly demonstrated side-channel attacks on quantum~computers.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 各向同性 · 操作 · Integration · 散度 ·
2023 年 6 月 23 日

This paper introduces general methodologies for constructing closed-form solutions to several important partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson, Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic and Maxwell equations. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and have potential applications in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial particular solutions, solutions that can in turn be obtained, respectively, from expansions using homogeneous polynomials and the Neumann series expansion of the operator $(k^2+\Delta)^{-1}$. No matrix inversion is required to compute the solution. The method naturally incorporates divergence constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is accompanied by a freely available Julia library, \texttt{PolynomialSolutions.jl}, which implements the proposed methodology in a non-symbolic format and efficiently constructs and provides access to rapid evaluation of the desired solution.

Gaussianization is a simple generative model that can be trained without backpropagation. It has shown compelling performance on low dimensional data. As the dimension increases, however, it has been observed that the convergence speed slows down. We show analytically that the number of required layers scales linearly with the dimension for Gaussian input. We argue that this is because the model is unable to capture dependencies between dimensions. Empirically, we find the same linear increase in cost for arbitrary input $p(x)$, but observe favorable scaling for some distributions. We explore potential speed-ups and formulate challenges for further research.

Deterministic finite automata (DFA) are a classic tool for high throughput matching of regular expressions, both in theory and practice. Due to their high space consumption, extensive research has been devoted to compressed representations of DFAs that still support efficient pattern matching queries. Kumar~et~al.~[SIGCOMM 2006] introduced the \emph{delayed deterministic finite automaton} (\ddfa{}) which exploits the large redundancy between inter-state transitions in the automaton. They showed it to obtain up to two orders of magnitude compression of real-world DFAs, and their work formed the basis of numerous subsequent results. Their algorithm, as well as later algorithms based on their idea, have an inherent quadratic-time bottleneck, as they consider every pair of states to compute the optimal compression. In this work we present a simple, general framework based on locality-sensitive hashing for speeding up these algorithms to achieve sub-quadratic construction times for \ddfa{}s. We apply the framework to speed up several algorithms to near-linear time, and experimentally evaluate their performance on real-world regular expression sets extracted from modern intrusion detection systems. We find an order of magnitude improvement in compression times, with either little or no loss of compression, or even significantly better compression in some cases.

Machine learning algorithms are powerful tools for data driven tasks such as image classification and feature detection, however their vulnerability to adversarial examples - input samples manipulated to fool the algorithm - remains a serious challenge. The integration of machine learning with quantum computing has the potential to yield tools offering not only better accuracy and computational efficiency, but also superior robustness against adversarial attacks. Indeed, recent work has employed quantum mechanical phenomena to defend against adversarial attacks, spurring the rapid development of the field of quantum adversarial machine learning (QAML) and potentially yielding a new source of quantum advantage. Despite promising early results, there remain challenges towards building robust real-world QAML tools. In this review we discuss recent progress in QAML and identify key challenges. We also suggest future research directions which could determine the route to practicality for QAML approaches as quantum computing hardware scales up and noise levels are reduced.

Algorithms for autonomous navigation in environments without Global Navigation Satellite System (GNSS) coverage mainly rely on onboard perception systems. These systems commonly incorporate sensors like cameras and Light Detection and Rangings (LiDARs), the performance of which may degrade in the presence of aerosol particles. Thus, there is a need of fusing acquired data from these sensors with data from Radio Detection and Rangings (RADARs) which can penetrate through such particles. Overall, this will improve the performance of localization and collision avoidance algorithms under such environmental conditions. This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles. A detailed description of the onboard sensors and the environment, where the dataset is collected are presented to enable full evaluation of acquired data. Furthermore, the dataset contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format to facilitate the evaluation of navigation, and localization algorithms in such environments. In contrast to the existing datasets, the focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data. Therefore, to validate the dataset, a preliminary comparison of odometry from onboard LiDARs is presented.

In today's world, many technologically advanced countries have realized that real power lies not in physical strength but in educated minds. As a result, every country has embarked on restructuring its education system to meet the demands of technology. As a country in the midst of these developments, we cannot remain indifferent to this transformation in education. In the Information Age of the 21st century, rapid access to information is crucial for the development of individuals and societies. To take our place among the knowledge societies in a world moving rapidly towards globalization, we must closely follow technological innovations and meet the requirements of technology. This can be achieved by providing learning opportunities to anyone interested in acquiring education in their area of interest. This study focuses on the advantages and disadvantages of internet-based learning compared to traditional teaching methods, the importance of computer usage in internet-based learning, negative factors affecting internet-based learning, and the necessary recommendations for addressing these issues. In today's world, it is impossible to talk about education without technology or technology without education.

Natural language is expected to be a key medium for various human-machine interactions in the era of large language models. When it comes to the biochemistry field, a series of tasks around molecules (e.g., property prediction, molecule mining, etc.) are of great significance while having a high technical threshold. Bridging the molecule expressions in natural language and chemical language can not only hugely improve the interpretability and reduce the operation difficulty of these tasks, but also fuse the chemical knowledge scattered in complementary materials for a deeper comprehension of molecules. Based on these benefits, we propose the conversational molecular design, a novel task adopting natural language for describing and editing target molecules. To better accomplish this task, we design ChatMol, a knowledgeable and versatile generative pre-trained model, enhanced by injecting experimental property information, molecular spatial knowledge, and the associations between natural and chemical languages into it. Several typical solutions including large language models (e.g., ChatGPT) are evaluated, proving the challenge of conversational molecular design and the effectiveness of our knowledge enhancement method. Case observations and analysis are conducted to provide directions for further exploration of natural-language interaction in molecular discovery.

Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies.

Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司