亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Standard techniques such as leave-one-out cross-validation (LOOCV) might not be suitable for evaluating the predictive performance of models incorporating structured random effects. In such cases, the correlation between the training and test sets could have a notable impact on the model's prediction error. To overcome this issue, an automatic group construction procedure for leave-group-out cross validation (LGOCV) has recently emerged as a valuable tool for enhancing predictive performance measurement in structured models. The purpose of this paper is (i) to compare LOOCV and LGOCV within structured models, emphasizing model selection and predictive performance, and (ii) to provide real data applications in spatial statistics using complex structured models fitted with INLA, showcasing the utility of the automatic LGOCV method. First, we briefly review the key aspects of the recently proposed LGOCV method for automatic group construction in latent Gaussian models. We also demonstrate the effectiveness of this method for selecting the model with the highest predictive performance by simulating extrapolation tasks in both temporal and spatial data analyses. Finally, we provide insights into the effectiveness of the LGOCV method in modelling complex structured data, encompassing spatio-temporal multivariate count data, spatial compositional data, and spatio-temporal geospatial data.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 原點 · Learning · 狀態空間 · 情景 ·
2024 年 1 月 19 日

We provide a novel approach to achieving a desired outcome in a coordination game: the original 2x2 game is embedded in a 2x3 game where one of the players may use a third action. For a large set of payoff values only one of the Nash equilibria of the original 2x2 game is stable under replicator dynamics. We show that this Nash equilibrium is the {\omega}-limit of all initial conditions in the interior of the state space for the modified 2x3 game. Thus, the existence of a third action for one of the players, although not used, allows both players to coordinate on one Nash equilibrium. This Nash equilibrium is the one preferred by, at least, the player with access to the new action. This approach deals with both coordination failure (players choose the payoff-dominant Nash equilibrium, if such a Nash equilibrium exists) and miscoordination (players do not use mixed strategies).

We present Neural Spectral Methods, a technique to solve parametric Partial Differential Equations (PDEs), grounded in classical spectral methods. Our method uses orthogonal bases to learn PDE solutions as mappings between spectral coefficients. In contrast to current machine learning approaches which enforce PDE constraints by minimizing the numerical quadrature of the residuals in the spatiotemporal domain, we leverage Parseval's identity and introduce a new training strategy through a \textit{spectral loss}. Our spectral loss enables more efficient differentiation through the neural network, and substantially reduces training complexity. At inference time, the computational cost of our method remains constant, regardless of the spatiotemporal resolution of the domain. Our experimental results demonstrate that our method significantly outperforms previous machine learning approaches in terms of speed and accuracy by one to two orders of magnitude on multiple different problems. When compared to numerical solvers of the same accuracy, our method demonstrates a $10\times$ increase in performance speed.

Human cognition operates on a "Global-first" cognitive mechanism, prioritizing information processing based on coarse-grained details. This mechanism inherently possesses an adaptive multi-granularity description capacity, resulting in computational traits such as efficiency, robustness, and interpretability. The analysis pattern reliance on the finest granularity and single-granularity makes most existing computational methods less efficient, robust, and interpretable, which is an important reason for the current lack of interpretability in neural networks. Multi-granularity granular-ball computing employs granular-balls of varying sizes to daptively represent and envelop the sample space, facilitating learning based on these granular-balls. Given that the number of coarse-grained "granular-balls" is fewer than sample points, granular-ball computing proves more efficient. Moreover, the inherent coarse-grained nature of granular-balls reduces susceptibility to fine-grained sample disturbances, enhancing robustness. The multi-granularity construct of granular-balls generates topological structures and coarse-grained descriptions, naturally augmenting interpretability. Granular-ball computing has successfully ventured into diverse AI domains, fostering the development of innovative theoretical methods, including granular-ball classifiers, clustering techniques, neural networks, rough sets, and evolutionary computing. This has notably ameliorated the efficiency, noise robustness, and interpretability of traditional methods. Overall, granular-ball computing is a rare and innovative theoretical approach in AI that can adaptively and simultaneously enhance efficiency, robustness, and interpretability. This article delves into the main application landscapes for granular-ball computing, aiming to equip future researchers with references and insights to refine and expand this promising theory.

The interpretability of models has become a crucial issue in Machine Learning because of algorithmic decisions' growing impact on real-world applications. Tree ensemble methods, such as Random Forests or XgBoost, are powerful learning tools for classification tasks. However, while combining multiple trees may provide higher prediction quality than a single one, it sacrifices the interpretability property resulting in "black-box" models. In light of this, we aim to develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior. First, given a target tree-ensemble model, we develop a hierarchical visualization tool based on a heatmap representation of the forest's feature use, considering the frequency of a feature and the level at which it is selected as an indicator of importance. Next, we propose a mixed-integer linear programming (MILP) formulation for constructing a single optimal multivariate tree that accurately mimics the target model predictions. The goal is to provide an interpretable surrogate model based on oblique hyperplane splits, which uses only the most relevant features according to the defined forest's importance indicators. The MILP model includes a penalty on feature selection based on their frequency in the forest to further induce sparsity of the splits. The natural formulation has been strengthened to improve the computational performance of {mixed-integer} software. Computational experience is carried out on benchmark datasets from the UCI repository using a state-of-the-art off-the-shelf solver. Results show that the proposed model is effective in yielding a shallow interpretable tree approximating the tree-ensemble decision function.

The present work explores the theoretical limits of Machine Learning (ML) within the framework of Kolmogorov's theory of Algorithmic Probability, which clarifies the notion of entropy as Expected Kolmogorov Complexity and formalizes other fundamental concepts such as Occam's razor via Levin's Universal Distribution. As a fundamental application, we develop Maximum Entropy methods that allow us to derive the Erd\H{o}s-Kac Law and Hardy-Ramanujan theorem in Probabilistic Number Theory, and establish the impossibility of discovering a formula for primes using Machine Learning via the Prime Coding Theorem.

This paper analyzes the stability of the class of Time-Accurate and Highly-Stable Explicit Runge-Kutta (TASE-RK) methods, introduced in 2021 by Bassenne et al. (J. Comput. Phys.) for the numerical solution of stiff Initial Value Problems (IVPs). Such numerical methods are easy to implement and require the solution of a limited number of linear systems per step, whose coefficient matrices involve the exact Jacobian $J$ of the problem. To significantly reduce the computational cost of TASE-RK methods without altering their consistency properties, it is possible to replace $J$ with a matrix $A$ (not necessarily tied to $J$) in their formulation, for instance fixed for a certain number of consecutive steps or even constant. However, the stability properties of TASE-RK methods strongly depend on this choice, and so far have been studied assuming $A=J$. In this manuscript, we theoretically investigate the conditional and unconditional stability of TASE-RK methods by considering arbitrary $A$. To this end, we first split the Jacobian as $J=A+B$. Then, through the use of stability diagrams and their connections with the field of values, we analyze both the case in which $A$ and $B$ are simultaneously diagonalizable and not. Numerical experiments, conducted on Partial Differential Equations (PDEs) arising from applications, show the correctness and utility of the theoretical results derived in the paper, as well as the good stability and efficiency of TASE-RK methods when $A$ is suitably chosen.

The rise of AI in human contexts places new demands on automated systems to be transparent and explainable. We examine some anthropomorphic ideas and principles relevant to such accountablity in order to develop a theoretical framework for thinking about digital systems in complex human contexts and the problem of explaining their behaviour. Structurally, systems are made of modular and hierachical components, which we abstract in a new system model using notions of modes and mode transitions. A mode is an independent component of the system with its own objectives, monitoring data, and algorithms. The behaviour of a mode, including its transitions to other modes, is determined by functions that interpret each mode's monitoring data in the light of its objectives and algorithms. We show how these belief functions can help explain system behaviour by visualising their evaluation as trajectories in higher-dimensional geometric spaces. These ideas are formalised mathematically by abstract and concrete simplicial complexes. We offer three techniques: a framework for design heuristics, a general system theory based on modes, and a geometric visualisation, and apply them in three types of human-centred systems.

Auditory spatial attention detection (ASAD) aims to decode the attended spatial location with EEG in a multiple-speaker setting. ASAD methods are inspired by the brain lateralization of cortical neural responses during the processing of auditory spatial attention, and show promising performance for the task of auditory attention decoding (AAD) with neural recordings. In the previous ASAD methods, the spatial distribution of EEG electrodes is not fully exploited, which may limit the performance of these methods. In the present work, by transforming the original EEG channels into a two-dimensional (2D) spatial topological map, the EEG data is transformed into a three-dimensional (3D) arrangement containing spatial-temporal information. And then a 3D deep convolutional neural network (DenseNet-3D) is used to extract temporal and spatial features of the neural representation for the attended locations. The results show that the proposed method achieves higher decoding accuracy than the state-of-the-art (SOTA) method (94.3% compared to XANet's 90.6%) with 1-second decision window for the widely used KULeuven (KUL) dataset, and the code to implement our work is available on Github: //github.com/xuxiran/ASAD_DenseNet

This paper introduces a reinforcement learning (RL) approach to address the challenges associated with configuring and optimizing genetic algorithms (GAs) for solving difficult combinatorial or non-linear problems. The proposed RL+GA method was specifically tested on the flow shop scheduling problem (FSP). The hybrid algorithm incorporates neural networks (NN) and uses the off-policy method Q-learning or the on-policy method Sarsa(0) to control two key genetic algorithm (GA) operators: parent selection mechanism and mutation. At each generation, the RL agent's action is determining the selection method, the probability of the parent selection and the probability of the offspring mutation. This allows the RL agent to dynamically adjust the selection and mutation based on its learned policy. The results of the study highlight the effectiveness of the RL+GA approach in improving the performance of the primitive GA. They also demonstrate its ability to learn and adapt from population diversity and solution improvements over time. This adaptability leads to improved scheduling solutions compared to static parameter configurations while maintaining population diversity throughout the evolutionary process.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

北京阿比特科技有限公司