Pre-trained language models (PLMs) leverage chains-of-thought (CoT) to simulate human reasoning and inference processes, achieving proficient performance in multi-hop QA. However, a gap persists between PLMs' reasoning abilities and those of humans when tackling complex problems. Psychological studies suggest a vital connection between explicit information in passages and human prior knowledge during reading. Nevertheless, current research has given insufficient attention to linking input passages and PLMs' pre-training-based knowledge from the perspective of human cognition studies. In this study, we introduce a Prompting Explicit and Implicit knowledge (PEI) framework, which uses prompts to connect explicit and implicit knowledge, aligning with human reading process for multi-hop QA. We consider the input passages as explicit knowledge, employing them to elicit implicit knowledge through unified prompt reasoning. Furthermore, our model incorporates type-specific reasoning via prompts, a form of implicit knowledge. Experimental results show that PEI performs comparably to the state-of-the-art on HotpotQA. Ablation studies confirm the efficacy of our model in bridging and integrating explicit and implicit knowledge.
Large language models (LLMs) exhibit impressive natural language capabilities but suffer from hallucination -- generating content ungrounded in the realities of training data. Recent work has focused on decoding techniques to improve factuality during inference by leveraging LLMs' hierarchical representation of factual knowledge, manipulating the predicted distributions at inference time. Current state-of-the-art approaches refine decoding by contrasting early-exit distributions from a lower layer with the final layer to exploit information related to factuality within the model forward procedure. However, such methods often assume the final layer is the most reliable and the lower layer selection process depends on it. In this work, we first propose extrapolation of critical token probabilities beyond the last layer for more accurate contrasting. We additionally employ layer-wise entropy-guided lower layer selection, decoupling the selection process from the final layer. Experiments demonstrate strong performance - surpassing state-of-the-art on multiple different datasets by large margins. Analyses show different kinds of prompts respond to different selection strategies.
As large language models (LLMs) expand the power of natural language processing to handle long inputs, rigorous and systematic analyses are necessary to understand their abilities and behavior. A salient application is summarization, due to its ubiquity and controversy (e.g., researchers have declared the death of summarization). In this paper, we use financial report summarization as a case study because financial reports not only are long but also use numbers and tables extensively. We propose a computational framework for characterizing multimodal long-form summarization and investigate the behavior of Claude 2.0/2.1, GPT-4/3.5, and Command. We find that GPT-3.5 and Command fail to perform this summarization task meaningfully. For Claude 2 and GPT-4, we analyze the extractiveness of the summary and identify a position bias in LLMs. This position bias disappears after shuffling the input for Claude, which suggests that Claude has the ability to recognize important information. We also conduct a comprehensive investigation on the use of numeric data in LLM-generated summaries and offer a taxonomy of numeric hallucination. We employ prompt engineering to improve GPT-4's use of numbers with limited success. Overall, our analyses highlight the strong capability of Claude 2 in handling long multimodal inputs compared to GPT-4.
Recent advances in natural language processing (NLP) can be largely attributed to the advent of pre-trained language models such as BERT and RoBERTa. While these models demonstrate remarkable performance on general datasets, they can struggle in specialized domains such as medicine, where unique domain-specific terminologies, domain-specific abbreviations, and varying document structures are common. This paper explores strategies for adapting these models to domain-specific requirements, primarily through continuous pre-training on domain-specific data. We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data. The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering. Our results suggest that models augmented by clinical and translation-based pre-training typically outperform general domain models in medical contexts. We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch. Furthermore, pre-training on clinical data or leveraging translated texts have proven to be reliable methods for domain adaptation in medical NLP tasks.
The rapid evolution of Integrated Circuit (IC) development necessitates innovative methodologies such as code generation to manage complexity and increase productivity. Using the right methodology for generator development to maximize the capability and, most notably, the feasibility of generators is a crucial part of this work. Meta-Modeling-based approaches drawing on the principles of Model Driven Architecture (MDA) are a promising methodology for generator development. The goal of this paper is to show why such an MDA-based approach can provide extremely powerful generators with minimal implementation effort and to demonstrate that this approach is a superior alternative to the most advanced hardware generation languages such as SpinalHDL and Chisel. For this purpose, this paper provides an in-depth comparison of the Meta-Modeling approach against these hardware generation languages, highlighting the unique advantages of a Meta-Modeling-based approach and summarizes the benefits.
In recent years, the development of pre-trained language models (PLMs) has gained momentum, showcasing their capacity to transcend linguistic barriers and facilitate knowledge transfer across diverse languages. However, this progress has predominantly bypassed the inclusion of very-low resource languages, creating a notable void in the multilingual landscape. This paper addresses this gap by introducing four tailored PLMs specifically finetuned for Angolan languages, employing a Multilingual Adaptive Fine-tuning (MAFT) approach. In this paper, we survey the role of informed embedding initialization and synthetic data in enhancing the performance of MAFT models in downstream tasks. We improve baseline over SOTA AfroXLMR-base (developed through MAFT) and OFA (an effective embedding initialization) by 12.3 and 3.8 points respectively.
Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains.
Alignment with human preference prevents large language models (LLMs) from generating misleading or toxic content while requiring high-cost human feedback. Assuming resources of human annotation are limited, there are two different ways of allocating considered: more diverse PROMPTS or more diverse RESPONSES to be labeled. Nonetheless, a straightforward comparison between their impact is absent. In this work, we first control the diversity of both sides according to the number of samples for fine-tuning, which can directly reflect their influence. We find that instead of numerous prompts, more responses but fewer prompts better trigger LLMs for human alignment. Additionally, the concept of diversity for prompts can be more complex than responses that are typically quantified by single digits. Consequently, a new formulation of prompt diversity is proposed, further implying a linear correlation with the final performance of LLMs after fine-tuning. We also leverage it on data augmentation and conduct experiments to show its effect on different algorithms.
Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets. This survey delves into an important attribute of these datasets: the dialect of a language. Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches. We describe a wide range of NLP tasks in terms of two categories: natural language understanding (NLU) (for tasks such as dialect classification, sentiment analysis, parsing, and NLU benchmarks) and natural language generation (NLG) (for summarisation, machine translation, and dialogue systems). The survey is also broad in its coverage of languages which include English, Arabic, German among others. We observe that past work in NLP concerning dialects goes deeper than mere dialect classification, and . This includes early approaches that used sentence transduction that lead to the recent approaches that integrate hypernetworks into LoRA. We expect that this survey will be useful to NLP researchers interested in building equitable language technologies by rethinking LLM benchmarks and model architectures.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.