亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We define infinitesimal gradient boosting as a limit of the popular tree-based gradient boosting algorithm from machine learning. The limit is considered in the vanishing-learning-rate asymptotic, that is when the learning rate tends to zero and the number of gradient trees is rescaled accordingly. For this purpose, we introduce a new class of randomized regression trees bridging totally randomized trees and Extra Trees and using a softmax distribution for binary splitting. Our main result is the convergence of the associated stochastic algorithm and the characterization of the limiting procedure as the unique solution of a nonlinear ordinary differential equation in a infinite dimensional function space. Infinitesimal gradient boosting defines a smooth path in the space of continuous functions along which the training error decreases, the residuals remain centered and the total variation is well controlled.

相關內容

We study the probabilistic sampling of a random variable, in which the variable is sampled only if it falls outside a given set, which is called the silence set. This helps us to understand optimal event-based sampling for the special case of IID random processes, and also to understand the design of a sub-optimal scheme for other cases. We consider the design of this probabilistic sampling for a scalar, log-concave random variable, to minimize either the mean square estimation error, or the mean absolute estimation error. We show that the optimal silence interval: (i) is essentially unique, and (ii) is the limit of an iterative procedure of centering. Further we show through numerical experiments that super-level intervals seem to be remarkably near-optimal for mean square estimation. Finally we use the Gauss inequality for scalar unimodal densities, to show that probabilistic sampling gives a mean square distortion that is less than a third of the distortion incurred by periodic sampling, if the average sampling rate is between 0.3 and 0.9 samples per tick.

The time-marching strategy, which propagates the solution from one time step to the next, is a natural strategy for solving time-dependent differential equations on classical computers, as well as for solving the Hamiltonian simulation problem on quantum computers. For more general linear differential equations, a time-marching based quantum solver can suffer from exponentially vanishing success probability with respect to the number of time steps and is thus considered impractical. We solve this problem by repeatedly invoking a technique called the uniform singular value amplification, and the overall success probability can be lower bounded by a quantity that is independent of the number of time steps. The success probability can be further improved using a compression gadget lemma. This provides a path of designing quantum differential equation solvers that is alternative to those based on quantum linear systems algorithms (QLSA). We demonstrate the performance of the time-marching strategy with a high-order integrator based on the truncated Dyson series. The complexity of the algorithm depends linearly on the amplification ratio, which quantifies the deviation from a unitary dynamics. We prove that the linear dependence on the amplification ratio attains the query complexity lower bound and thus cannot be improved in the worst case. This algorithm also surpasses existing QLSA based solvers in three aspects: (1) the coefficient matrix $A(t)$ does not need to be diagonalizable. (2) $A(t)$ can be non-smooth, and is only of bounded variation. (3) It can use fewer queries to the initial state. Finally, we demonstrate the time-marching strategy with a first-order truncated Magnus series, while retaining the aforementioned benefits. Our analysis also raises some open questions concerning the differences between time-marching and QLSA based methods for solving differential equations.

This paper is concerned with low-rank matrix optimization, which has found a wide range of applications in machine learning. This problem in the special case of matrix sensing has been studied extensively through the notion of Restricted Isometry Property (RIP), leading to a wealth of results on the geometric landscape of the problem and the convergence rate of common algorithms. However, the existing results can handle the problem in the case with a general objective function subject to noisy data only when the RIP constant is close to 0. In this paper, we develop a new mathematical framework to solve the above-mentioned problem with a far less restrictive RIP constant. We prove that as long as the RIP constant of the noiseless objective is less than $1/3$, any spurious local solution of the noisy optimization problem must be close to the ground truth solution. By working through the strict saddle property, we also show that an approximate solution can be found in polynomial time. We characterize the geometry of the spurious local minima of the problem in a local region around the ground truth in the case when the RIP constant is greater than $1/3$. Compared to the existing results in the literature, this paper offers the strongest RIP bound and provides a complete theoretical analysis on the global and local optimization landscapes of general low-rank optimization problems under random corruptions from any finite-variance family.

Hierarchical learning algorithms that gradually approximate a solution to a data-driven optimization problem are essential to decision-making systems, especially under limitations on time and computational resources. In this study, we introduce a general-purpose hierarchical learning architecture that is based on the progressive partitioning of a possibly multi-resolution data space. The optimal partition is gradually approximated by solving a sequence of optimization sub-problems that yield a sequence of partitions with increasing number of subsets. We show that the solution of each optimization problem can be estimated online using gradient-free stochastic approximation updates. As a consequence, a function approximation problem can be defined within each subset of the partition and solved using the theory of two-timescale stochastic approximation algorithms. This simulates an annealing process and defines a robust and interpretable heuristic method to gradually increase the complexity of the learning architecture in a task-agnostic manner, giving emphasis to regions of the data space that are considered more important according to a predefined criterion. Finally, by imposing a tree structure in the progression of the partitions, we provide a means to incorporate potential multi-resolution structure of the data space into this approach, significantly reducing its complexity, while introducing hierarchical variable-rate feature extraction properties similar to certain classes of deep learning architectures. Asymptotic convergence analysis and experimental results are provided for supervised and unsupervised learning problems.

We introduce a class of generative models based on the stochastic interpolant framework proposed in Albergo & Vanden-Eijnden (2023) that unifies flow-based and diffusion-based methods. We first show how to construct a broad class of continuous-time stochastic processes whose time-dependent probability density function bridges two arbitrary densities exactly in finite time. These `stochastic interpolants' are built by combining data from the two densities with an additional latent variable, and the specific details of the construction can be leveraged to shape the resulting time-dependent density in a flexible way. We then show that the time-dependent density of the stochastic interpolant satisfies a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion; upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with a tunable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. Remarkably, we show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics; by contrast, we show that generative models based upon a deterministic dynamics must, in addition, control the Fisher divergence between the target and the model. Finally, we construct estimators for the likelihood and the cross-entropy of interpolant-based generative models, and demonstrate that such models recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant.

Transfer learning aims to improve the performance of target tasks by transferring knowledge acquired in source tasks. The standard approach is pre-training followed by fine-tuning or linear probing. Especially, selecting a proper source domain for a specific target domain under predefined tasks is crucial for improving efficiency and effectiveness. It is conventional to solve this problem via estimating transferability. However, existing methods can not reach a trade-off between performance and cost. To comprehensively evaluate estimation methods, we summarize three properties: stability, reliability and efficiency. Building upon them, we propose Principal Gradient Expectation(PGE), a simple yet effective method for assessing transferability. Specifically, we calculate the gradient over each weight unit multiple times with a restart scheme, and then we compute the expectation of all gradients. Finally, the transferability between the source and target is estimated by computing the gap of normalized principal gradients. Extensive experiments show that the proposed metric is superior to state-of-the-art methods on all properties.

Recently, recovering an unknown signal from quadratic measurements has gained popularity because it includes many interesting applications as special cases such as phase retrieval, fusion frame phase retrieval, and positive operator-valued measure. In this paper, by employing the least squares approach to reconstruct the signal, we establish the non-asymptotic statistical property showing that the gap between the estimator and the true signal is vanished in the noiseless case and is bounded in the noisy case by an error rate of $O(\sqrt{p\log(1+2n)/n})$, where $n$ and $p$ are the number of measurements and the dimension of the signal, respectively. We develop a gradient regularized Newton method (GRNM) to solve the least squares problem and prove that it converges to a unique local minimum at a superlinear rate under certain mild conditions. In addition to the deterministic results, GRNM can reconstruct the true signal exactly for the noiseless case and achieve the above error rate with a high probability for the noisy case. Numerical experiments demonstrate the GRNM performs nicely in terms of high order of recovery accuracy, faster computational speed, and strong recovery capability.

Nonlinear control systems with partial information to the decision maker are prevalent in a variety of applications. As a step toward studying such nonlinear systems, this work explores reinforcement learning methods for finding the optimal policy in the nearly linear-quadratic regulator systems. In particular, we consider a dynamic system that combines linear and nonlinear components, and is governed by a policy with the same structure. Assuming that the nonlinear component comprises kernels with small Lipschitz coefficients, we characterize the optimization landscape of the cost function. Although the cost function is nonconvex in general, we establish the local strong convexity and smoothness in the vicinity of the global optimizer. Additionally, we propose an initialization mechanism to leverage these properties. Building on the developments, we design a policy gradient algorithm that is guaranteed to converge to the globally optimal policy with a linear rate.

The Elvis problem has been studied in [2], which proves existence of solutions. However, their computation in the non-smooth case remains unsolved. A bisection method is proposed to solve the Elvis problem in two space dimensions for general convex bounded velocity sets. The convergence rate is proved to be linear. Finally, numerical tests are performed on smooth and non-smooth velocity sets demonstrating the robustness of the algorithm.

We conduct a systematic study of solving the learning parity with noise problem (LPN) using neural networks. Our main contribution is designing families of two-layer neural networks that practically outperform classical algorithms in high-noise, low-dimension regimes. We consider three settings where the numbers of LPN samples are abundant, very limited, and in between. In each setting we provide neural network models that solve LPN as fast as possible. For some settings we are also able to provide theories that explain the rationale of the design of our models. Comparing with the previous experiments of Esser, Kubler, and May (CRYPTO 2017), for dimension $n = 26$, noise rate $\tau = 0.498$, the ''Guess-then-Gaussian-elimination'' algorithm takes 3.12 days on 64 CPU cores, whereas our neural network algorithm takes 66 minutes on 8 GPUs. Our algorithm can also be plugged into the hybrid algorithms for solving middle or large dimension LPN instances.

北京阿比特科技有限公司