With the great success of text-conditioned diffusion models in creative text-to-image generation, various text-driven image editing approaches have attracted the attentions of many researchers. However, previous works mainly focus on discreteness-sensitive instructions such as adding, removing or replacing specific objects, background elements or global styles (i.e., hard editing), while generally ignoring subject-binding but semantically fine-changing continuity-sensitive instructions such as actions, poses or adjectives, and so on (i.e., soft editing), which hampers generative AI from generating user-customized visual contents. To mitigate this predicament, we propose a spatio-temporal guided adaptive editing algorithm AdapEdit, which realizes adaptive image editing by introducing a soft-attention strategy to dynamically vary the guiding degree from the editing conditions to visual pixels from both temporal and spatial perspectives. Note our approach has a significant advantage in preserving model priors and does not require model training, fine-tuning, extra data, or optimization. We present our results over a wide variety of raw images and editing instructions, demonstrating competitive performance and showing it significantly outperforms the previous approaches.
Large-scale text-to-image models including Stable Diffusion are capable of generating high-fidelity photorealistic portrait images. There is an active research area dedicated to personalizing these models, aiming to synthesize specific subjects or styles using provided sets of reference images. However, despite the plausible results from these personalization methods, they tend to produce images that often fall short of realism and are not yet on a commercially viable level. This is particularly noticeable in portrait image generation, where any unnatural artifact in human faces is easily discernible due to our inherent human bias. To address this, we introduce MagiCapture, a personalization method for integrating subject and style concepts to generate high-resolution portrait images using just a few subject and style references. For instance, given a handful of random selfies, our fine-tuned model can generate high-quality portrait images in specific styles, such as passport or profile photos. The main challenge with this task is the absence of ground truth for the composed concepts, leading to a reduction in the quality of the final output and an identity shift of the source subject. To address these issues, we present a novel Attention Refocusing loss coupled with auxiliary priors, both of which facilitate robust learning within this weakly supervised learning setting. Our pipeline also includes additional post-processing steps to ensure the creation of highly realistic outputs. MagiCapture outperforms other baselines in both quantitative and qualitative evaluations and can also be generalized to other non-human objects.
While vision transformers (ViTs) have shown great potential in computer vision tasks, their intense computation and memory requirements pose challenges for practical applications. Existing post-training quantization methods leverage value redistribution or specialized quantizers to address the non-normal distribution in ViTs. However, without considering the asymmetry in activations and relying on hand-crafted settings, these methods often struggle to maintain performance under low-bit quantization. To overcome these challenges, we introduce SmoothQuant with bias term (SQ-b) to alleviate the asymmetry issue and reduce the clamping loss. We also introduce optimal scaling factor ratio search (OPT-m) to determine quantization parameters by a data-dependent mechanism automatically. To further enhance the compressibility, we incorporate the above-mentioned techniques and propose a mixed-precision post-training quantization framework for vision transformers (MPTQ-ViT). We develop greedy mixed-precision quantization (Greedy MP) to allocate layer-wise bit-width considering both model performance and compressibility. Our experiments on ViT, DeiT, and Swin demonstrate significant accuracy improvements compared with SOTA on the ImageNet dataset. Specifically, our proposed methods achieve accuracy improvements ranging from 0.90% to 23.35% on 4-bit ViTs with single-precision and from 3.82% to 78.14% on 5-bit fully quantized ViTs with mixed-precision.
This study introduces LRDif, a novel diffusion-based framework designed specifically for facial expression recognition (FER) within the context of under-display cameras (UDC). To address the inherent challenges posed by UDC's image degradation, such as reduced sharpness and increased noise, LRDif employs a two-stage training strategy that integrates a condensed preliminary extraction network (FPEN) and an agile transformer network (UDCformer) to effectively identify emotion labels from UDC images. By harnessing the robust distribution mapping capabilities of Diffusion Models (DMs) and the spatial dependency modeling strength of transformers, LRDif effectively overcomes the obstacles of noise and distortion inherent in UDC environments. Comprehensive experiments on standard FER datasets including RAF-DB, KDEF, and FERPlus, LRDif demonstrate state-of-the-art performance, underscoring its potential in advancing FER applications. This work not only addresses a significant gap in the literature by tackling the UDC challenge in FER but also sets a new benchmark for future research in the field.
We introduce ReplaceAnything3D model (RAM3D), a novel text-guided 3D scene editing method that enables the replacement of specific objects within a scene. Given multi-view images of a scene, a text prompt describing the object to replace, and a text prompt describing the new object, our Erase-and-Replace approach can effectively swap objects in the scene with newly generated content while maintaining 3D consistency across multiple viewpoints. We demonstrate the versatility of ReplaceAnything3D by applying it to various realistic 3D scenes, showcasing results of modified foreground objects that are well-integrated with the rest of the scene without affecting its overall integrity.
Existing multi-focus image fusion (MFIF) methods often fail to preserve the uncertain transition region and detect small focus areas within large defocused regions accurately. To address this issue, this study proposes a new small-area-aware MFIF algorithm for enhancing object detection capability. First, we enhance the pixel attributes within the small focus and boundary regions, which are subsequently combined with visual saliency detection to obtain the pre-fusion results used to discriminate the distribution of focused pixels. To accurately ensure pixel focus, we consider the source image as a combination of focused, defocused, and uncertain regions and propose a three-region segmentation strategy. Finally, we design an effective pixel selection rule to generate segmentation decision maps and obtain the final fusion results. Experiments demonstrated that the proposed method can accurately detect small and smooth focus areas while improving object detection performance, outperforming existing methods in both subjective and objective evaluations. The source code is available at //github.com/ixilai/SAMF.
We present a framework for learning cross-modal video representations by directly pre-training on raw data to facilitate various downstream video-text tasks. Our main contributions lie in the pre-training framework and proxy tasks. First, based on the shortcomings of two mainstream pixel-level pre-training architectures (limited applications or less efficient), we propose Shared Network Pre-training (SNP). By employing one shared BERT-type network to refine textual and cross-modal features simultaneously, SNP is lightweight and could support various downstream applications. Second, based on the intuition that people always pay attention to several "significant words" when understanding a sentence, we propose the Significant Semantic Strengthening (S3) strategy, which includes a novel masking and matching proxy task to promote the pre-training performance. Experiments conducted on three downstream video-text tasks and six datasets demonstrate that, we establish a new state-of-the-art in pixel-level video-text pre-training; we also achieve a satisfactory balance between the pre-training efficiency and the fine-tuning performance. The codebase are available at //github.com/alipay/Ant-Multi-Modal-Framework/tree/main/prj/snps3_vtp.
We propose EnCLAP, a novel framework for automated audio captioning. EnCLAP employs two acoustic representation models, EnCodec and CLAP, along with a pretrained language model, BART. We also introduce a new training objective called masked codec modeling that improves acoustic awareness of the pretrained language model. Experimental results on AudioCaps and Clotho demonstrate that our model surpasses the performance of baseline models. Source code will be available at //github.com/jaeyeonkim99/EnCLAP . An online demo is available at //huggingface.co/spaces/enclap-team/enclap .
We introduce Motion-I2V, a novel framework for consistent and controllable image-to-video generation (I2V). In contrast to previous methods that directly learn the complicated image-to-video mapping, Motion-I2V factorizes I2V into two stages with explicit motion modeling. For the first stage, we propose a diffusion-based motion field predictor, which focuses on deducing the trajectories of the reference image's pixels. For the second stage, we propose motion-augmented temporal attention to enhance the limited 1-D temporal attention in video latent diffusion models. This module can effectively propagate reference image's feature to synthesized frames with the guidance of predicted trajectories from the first stage. Compared with existing methods, Motion-I2V can generate more consistent videos even at the presence of large motion and viewpoint variation. By training a sparse trajectory ControlNet for the first stage, Motion-I2V can support users to precisely control motion trajectories and motion regions with sparse trajectory and region annotations. This offers more controllability of the I2V process than solely relying on textual instructions. Additionally, Motion-I2V's second stage naturally supports zero-shot video-to-video translation. Both qualitative and quantitative comparisons demonstrate the advantages of Motion-I2V over prior approaches in consistent and controllable image-to-video generation. Please see our project page at //xiaoyushi97.github.io/Motion-I2V/.
We present our work on scalable, GPU-accelerated algorithms for diffeomorphic image registration. The associated software package is termed CLAIRE. Image registration is a non-linear inverse problem. It is about computing a spatial mapping from one image of the same object or scene to another. In diffeomorphic image registration, the set of admissible spatial transformations is restricted to maps that are smooth, one-to-one, and have a smooth inverse. We formulate diffeomorphic image registration as a variational problem governed by transport equations. We use an inexact, globalized (Gauss--)Newton--Krylov method for numerical optimization. We consider semi-Lagrangian methods for numerical time integration. Our solver features mixed-precision, hardware-accelerated computational kernels for optimal computational throughput. We use the message-passing interface for distributed-memory parallelism and deploy our code on modern high-performance computing architectures. Our solver allows us to solve clinically relevant problems in under four seconds on a single GPU. It can also be applied to large-scale 3D imaging applications with data that is discretized on meshes with billions of voxels. We demonstrate that our numerical framework yields high-fidelity results in only a few seconds, even if we search for an optimal regularization parameter.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.