亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the automotive industry, platform configuration and software integration are mostly manual tasks performed during the development phase, requiring consideration of various safety and non-safety requirements. This manual process often leads to prolonged development cycles and provides limited flexibility. This paper introduces a novel approach to automate platform configuration and software integration for software-defined vehicles (SDVs), shifting these activities from the development phase to runtime. Our approach features an integration manager that combines model-based methods and virtualization technologies to generate and execute deployment plans. By leveraging model-based systems engineering (MBSE), our method automatically generates platform configuration and software integration plans, which are then converted into deployment-ready formats using code generation techniques. Utilizing virtualization and container orchestration technologies, the proposed system enables dynamic and flexible resource allocation while ensuring compliance with safety requirements. Communication between the development and runtime platforms is facilitated via a REST API. A proof of concept was implemented on a simulated SDV platform with the Intel Whiskey Lake Board. This demonstration showcases the integration manager on an SDV with a central computer, highlighting the potential to shorten development cycles and adapt to diverse vehicle configurations.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Modern computers rely on USB and HDMI ports for connecting external peripherals and display devices. Despite their built-in security measures, these ports remain susceptible to passive power-based side-channel attacks. This paper presents a new class of attacks that exploit power consumption patterns at these ports to infer GPU activities. We develop a custom device that plugs into these ports and demonstrate that its high-resolution power measurements can drive successful inferences about GPU processes, such as neural network computations and video rendering. The ubiquitous presence of USB and HDMI ports allows for discreet placement of the device, and its non-interference with data channels ensures that no security alerts are triggered. Our findings underscore the need to reevaluate and strengthen the current generation of HDMI and USB port security defenses.

This article makes discrete masked models for the generative modeling of discrete data controllable. The goal is to generate samples of a discrete random variable that adheres to a posterior distribution, satisfies specific constraints, or optimizes a reward function. This methodological development enables broad applications across downstream tasks such as class-specific image generation and protein design. Existing approaches for controllable generation of masked models typically rely on task-specific fine-tuning or additional modifications, which can be inefficient and resource-intensive. To overcome these limitations, we propose a novel plug-and-play framework based on importance sampling that bypasses the need for training a conditional score. Our framework is agnostic to the choice of control criteria, requires no gradient information, and is well-suited for tasks such as posterior sampling, Bayesian inverse problems, and constrained generation. We demonstrate the effectiveness of our approach through extensive experiments, showcasing its versatility across multiple domains, including protein design.

In Query-driven Travel Recommender Systems (RSs), it is crucial to understand the user intent behind challenging natural language(NL) destination queries such as the broadly worded "youth-friendly activities" or the indirect description "a high school graduation trip". Such queries are challenging due to the wide scope and subtlety of potential user intents that confound the ability of retrieval methods to infer relevant destinations from available textual descriptions such as WikiVoyage. While query reformulation (QR) has proven effective in enhancing retrieval by addressing user intent, existing QR methods tend to focus only on expanding the range of potentially matching query subtopics (breadth) or elaborating on the potential meaning of a query (depth), but not both. In this paper, we introduce Elaborative Subtopic Query Reformulation (EQR), a large language model-based QR method that combines both breadth and depth by generating potential query subtopics with information-rich elaborations. We also release TravelDest, a novel dataset for query-driven travel destination RSs. Experiments on TravelDest show that EQR achieves significant improvements in recall and precision over existing state-of-the-art QR methods.

To effectively study complex causal systems, it is often useful to construct representations that simplify parts of the system by discarding irrelevant details while preserving key features. The Information Bottleneck (IB) method is a widely used approach in representation learning that compresses random variables while retaining information about a target variable. Traditional methods like IB are purely statistical and ignore underlying causal structures, making them ill-suited for causal tasks. We propose the Causal Information Bottleneck (CIB), a causal extension of the IB, which compresses a set of chosen variables while maintaining causal control over a target variable. This method produces representations which are causally interpretable, and which can be used when reasoning about interventions. We present experimental results demonstrating that the learned representations accurately capture causality as intended.

With the rapid development and widespread use of advanced network systems, software vulnerabilities pose a significant threat to secure communications and networking. Learning-based vulnerability detection systems, particularly those leveraging pre-trained language models, have demonstrated significant potential in promptly identifying vulnerabilities in communication networks and reducing the risk of exploitation. However, the shortage of accurately labeled vulnerability datasets hinders further progress in this field. Failing to represent real-world vulnerability data variety and preserve vulnerability semantics, existing augmentation approaches provide limited or even counterproductive contributions to model training. In this paper, we propose a data augmentation technique aimed at enhancing the performance of pre-trained language models for vulnerability detection. Given the vulnerability dataset, our method performs natural semantic-preserving program transformation to generate a large volume of new samples with enriched data diversity and variety. By incorporating our augmented dataset in fine-tuning a series of representative code pre-trained models (i.e., CodeBERT, GraphCodeBERT, UnixCoder, and PDBERT), up to 10.1% increase in accuracy and 23.6% increase in F1 can be achieved in the vulnerability detection task. Comparison results also show that our proposed method can substantially outperform other prominent vulnerability augmentation approaches.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司