In this survey we are focusing on utilizing drone-based systems for the detection of individuals, particularly by identifying human screams and other distress signals. This study has significant relevance in post-disaster scenarios, including events such as earthquakes, hurricanes, military conflicts, wildfires, and more. These drones are capable of hovering over disaster-stricken areas that may be challenging for rescue teams to access directly. Unmanned aerial vehicles (UAVs), commonly referred to as drones, are frequently deployed for search-and-rescue missions during disaster situations. Typically, drones capture aerial images to assess structural damage and identify the extent of the disaster. They also employ thermal imaging technology to detect body heat signatures, which can help locate individuals. In some cases, larger drones are used to deliver essential supplies to people stranded in isolated disaster-stricken areas. In our discussions, we delve into the unique challenges associated with locating humans through aerial acoustics. The auditory system must distinguish between human cries and sounds that occur naturally, such as animal calls and wind. Additionally, it should be capable of recognizing distinct patterns related to signals like shouting, clapping, or other ways in which people attempt to signal rescue teams. To tackle this challenge, one solution involves harnessing artificial intelligence (AI) to analyze sound frequencies and identify common audio signatures. Deep learning-based networks, such as convolutional neural networks (CNNs), can be trained using these signatures to filter out noise generated by drone motors and other environmental factors. Furthermore, employing signal processing techniques like the direction of arrival (DOA) based on microphone array signals can enhance the precision of tracking the source of human noises.
Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models by capturing causal relationships among variables. The emergence of generative Large Language Models (LLMs) has significantly impacted various NLP domains, particularly through their advanced reasoning capabilities. This survey focuses on evaluating and improving LLMs from a causal view in the following areas: understanding and improving the LLMs' reasoning capacity, addressing fairness and safety issues in LLMs, complementing LLMs with explanations, and handling multimodality. Meanwhile, LLMs' strong reasoning capacities can in turn contribute to the field of causal inference by aiding causal relationship discovery and causal effect estimations. This review explores the interplay between causal inference frameworks and LLMs from both perspectives, emphasizing their collective potential to further the development of more advanced and equitable artificial intelligence systems.
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.
Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios. However, statistical learning-based methods may not train deep learning models robustly with these noisy labels. Therefore, it is urgent to design Label-Noise Representation Learning (LNRL) methods for robustly training deep models with noisy labels. To fully understand LNRL, we conduct a survey study. We first clarify a formal definition for LNRL from the perspective of machine learning. Then, via the lens of learning theory and empirical study, we figure out why noisy labels affect deep models' performance. Based on the theoretical guidance, we categorize different LNRL methods into three directions. Under this unified taxonomy, we provide a thorough discussion of the pros and cons of different categories. More importantly, we summarize the essential components of robust LNRL, which can spark new directions. Lastly, we propose possible research directions within LNRL, such as new datasets, instance-dependent LNRL, and adversarial LNRL. Finally, we envision potential directions beyond LNRL, such as learning with feature-noise, preference-noise, domain-noise, similarity-noise, graph-noise, and demonstration-noise.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.