亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the phi-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in l2(H1) and linf(L2) norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of phi-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.

相關內容

A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed "LSOP-R," is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of the feasible set of LSOP-R and prove their tightness for the domain sets with different matrix spaces. The proposed rank bounds recover two well-known results in the literature from a fresh angle and also allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to the original LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle, coupled with a rank-reduction algorithm, which ensures the output solution satisfies the theoretical rank bound. Finally, we numerically verify the strength of the LSOP-R and the efficacy of the proposed algorithms.

Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications, including those in machine learning, statistics, bioinformatics, economics, and medicine. Despite its popularity in practice, a satisfactory level of understanding of the convergence behavior of Gaussian-gated MoE parameter estimation is far from complete. The underlying reason for this challenge is the inclusion of covariates in the Gaussian gating and expert networks, which leads to their intrinsically complex interactions via partial differential equations with respect to their parameters. We address these issues by designing novel Voronoi loss functions to accurately capture heterogeneity in the maximum likelihood estimator (MLE) for resolving parameter estimation in these models. Our results reveal distinct behaviors of the MLE under two settings: the first setting is when all the location parameters in the Gaussian gating are non-zeros while the second setting is when there exists at least one zero-valued location parameter. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to verify our theoretical results.

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

The deep generative model yields an implicit estimator for the unknown distribution or density function of the observation. This paper investigates some statistical properties of the implicit density estimator pursued by VAE-type methods from a nonparametric density estimation framework. More specifically, we obtain convergence rates of the VAE-type density estimator under the assumption that the underlying true density function belongs to a locally H\"{o}lder class. Remarkably, a near minimax optimal rate with respect to the Hellinger metric can be achieved by the simplest network architecture, a shallow generative model with a one-dimensional latent variable. The proof of the main theorem relies on the well-known result from the nonparametric Bayesian literature that a smooth density with a suitably decaying tail can efficiently be approximated by a finite mixture of normal distributions. We also discuss an alternative proof, which offers important insights and suggests a potential extension to structured density estimation.

Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. This also gives the first polynomial-time algorithm for the asymptotic linear program problem introduced by Jeroslow in 1973. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). It is shown that there exists $\delta_0>0$ such that for all $0<\delta<\delta_0$ the distribution of $\eta_t$ converges to a unique stationary measure irrespective of the initial condition $\eta_0$. We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured by Makur, Mossel and Polyanskiy.

We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks. The code, data and pretrained models are publicly available.

Several precise and computationally efficient results for pointing errors models in two asymptotic cases are derived in this paper. The normalized mean-squared error (NMSE) performance metric is employed to quantify the accuracy of different models. For the case that the beam width is relatively larger than the detection aperture, we propose the three kinds of models that have the form of $c_1\exp(-c_2r^2) $.It is shown that the modified intensity uniform model not only achieves a comparable accuracy with the best linearized model, but also is expressed in an elegant mathematical way when compared to the traditional Farid model. This indicates that the modified intensity uniform model is preferable in the performance analysis of free space optical (FSO) systems considering the effects of the pointing errors. By analogizing the beam spot with a point in the case that beam width is smaller than the detection aperture, the solution of the pointing errors model is transformed to a smooth function approximation problem, and we find that a more accurate approximation can be achieved by the proposed point approximation model when compared to the model that is induced from the Vasylyev model in some scenarios.

In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.

Semi-supervised learning by self-training heavily relies on pseudo-label selection (PLS). The selection often depends on the initial model fit on labeled data. Early overfitting might thus be propagated to the final model by selecting instances with overconfident but erroneous predictions, often referred to as confirmation bias. This paper introduces BPLS, a Bayesian framework for PLS that aims to mitigate this issue. At its core lies a criterion for selecting instances to label: an analytical approximation of the posterior predictive of pseudo-samples. We derive this selection criterion by proving Bayes optimality of the posterior predictive of pseudo-samples. We further overcome computational hurdles by approximating the criterion analytically. Its relation to the marginal likelihood allows us to come up with an approximation based on Laplace's method and the Gaussian integral. We empirically assess BPLS for parametric generalized linear and non-parametric generalized additive models on simulated and real-world data. When faced with high-dimensional data prone to overfitting, BPLS outperforms traditional PLS methods.

When estimating quantities and fields that are difficult to measure directly, such as the fluidity of ice, from point data sources, such as satellite altimetry, it is important to solve a numerical inverse problem that is formulated with Bayesian consistency. Otherwise, the resultant probability density function for the difficult to measure quantity or field will not be appropriately clustered around the truth. In particular, the inverse problem should be formulated by evaluating the numerical solution at the true point locations for direct comparison with the point data source. If the data are first fitted to a gridded or meshed field on the computational grid or mesh, and the inverse problem formulated by comparing the numerical solution to the fitted field, the benefits of additional point data values below the grid density will be lost. We demonstrate, with examples in the fields of groundwater hydrology and glaciology, that a consistent formulation can increase the accuracy of results and aid discourse between modellers and observationalists. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). This new abstraction is well-suited to automation, including automatic differentiation. We demonstrate this through implementation in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint, allowing PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation.

北京阿比特科技有限公司