亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online communities, like Wikipedia, produce valuable public information goods. Whereas some of these communities require would-be contributors to create accounts, many do not. Does this requirement catalyze cooperation or inhibit participation? Prior research provides divergent predictions but little causal evidence. We conduct an empirical test using longitudinal data from 136 natural experiments where would-be contributors to wikis were suddenly required to log in to contribute. Requiring accounts leads to a small increase in account creation, but reduces both high- and low-quality contributions from registered and unregistered participants. Although the change deters a large portion of low-quality participation, the vast majority of deterred contributions are of higher quality. We conclude that requiring accounts introduces an undertheorized tradeoff for public goods production in interactive communication systems.

相關內容

Both logic programming in general, and Prolog in particular, have a long and fascinating history, intermingled with that of many disciplines they inherited from or catalyzed. A large body of research has been gathered over the last 50 years, supported by many Prolog implementations. Many implementations are still actively developed, while new ones keep appearing. Often, the features added by different systems were motivated by the interdisciplinary needs of programmers and implementors, yielding systems that, while sharing the "classic" core language, and, in particular, the main aspects of the ISO-Prolog standard, also depart from each other in other aspects. This obviously poses challenges for code portability. The field has also inspired many related, but quite different languages that have created their own communities. This article aims at integrating and applying the main lessons learned in the process of evolution of Prolog. It is structured into three major parts. Firstly, we overview the evolution of Prolog systems and the community approximately up to the ISO standard, considering both the main historic developments and the motivations behind several Prolog implementations, as well as other logic programming languages influenced by Prolog. Then, we discuss the Prolog implementations that are most active after the appearance of the standard: their visions, goals, commonalities, and incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential of Prolog, and propose future directions along which Prolog might continue to add useful features, interfaces, libraries, and tools, while at the same time improving compatibility between implementations.

We seek an entropy estimator for discrete distributions with fully empirical accuracy bounds. As stated, this goal is infeasible without some prior assumptions on the distribution. We discover that a certain information moment assumption renders the problem feasible. We argue that the moment assumption is natural and, in some sense, {\em minimalistic} -- weaker than finite support or tail decay conditions. Under the moment assumption, we provide the first finite-sample entropy estimates for infinite alphabets, nearly recovering the known minimax rates. Moreover, we demonstrate that our empirical bounds are significantly sharper than the state-of-the-art bounds, for various natural distributions and non-trivial sample regimes. Along the way, we give a dimension-free analogue of the Cover-Thomas result on entropy continuity (with respect to total variation distance) for finite alphabets, which may be of independent interest. Additionally, we resolve all of the open problems posed by J\"urgensen and Matthews, 2010.

Game-theoretic techniques and equilibria analysis facilitate the design and verification of competitive systems. While algorithmic complexity of equilibria computation has been extensively studied, practical implementation and application of game-theoretic methods is more recent. Tools such as PRISM-games support automated verification and synthesis of zero-sum and (epsilon-optimal subgame-perfect) social welfare Nash equilibria properties for concurrent stochastic games. However, these methods become inefficient as the number of agents grows and may also generate equilibria that yield significant variations in the outcomes for individual agents. Instead, we consider correlated equilibria, in which players can coordinate through public signals, and introduce an alternative optimality criterion of social fairness, which can be applied to both Nash and correlated equilibria. We show that correlated equilibria are easier to compute, are more equitable, and can also improve joint outcomes. We implement algorithms for both normal form games and the more complex case of multi-player concurrent stochastic games with temporal logic specifications.

We study the two inference problems of detecting and recovering an isolated community of \emph{general} structure planted in a random graph. The detection problem is formalized as a hypothesis testing problem, where under the null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi random graph $\mathcal{G}(n,q)$ with edge density $q\in(0,1)$; under the alternative, there is an unknown structure $\Gamma_k$ on $k$ nodes, planted in $\mathcal{G}(n,q)$, such that it appears as an \emph{induced subgraph}. In case of a successful detection, we are concerned with the task of recovering the corresponding structure. For these problems, we investigate the fundamental limits from both the statistical and computational perspectives. Specifically, we derive lower bounds for detecting/recovering the structure $\Gamma_k$ in terms of the parameters $(n,k,q)$, as well as certain properties of $\Gamma_k$, and exhibit computationally unbounded optimal algorithms that achieve these lower bounds. We also consider the problem of testing in polynomial-time. As is customary in many similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints can severely penalize the statistical performance. To provide an evidence for this phenomenon, we show that the class of low-degree polynomials algorithms match the statistical performance of the polynomial-time algorithms we develop.

In countries where population census and sample survey data are limited, generating accurate subnational estimates of health and demographic indicators is challenging. Existing model-based geostatistical methods leverage covariate information and spatial smoothing to reduce the variability of estimates but often assume the survey design is ignorable, which may be inappropriate given the complex design of household surveys typically used in this context. On the other hand, small area estimation approaches common in the survey statistics literature do not incorporate both unit-level covariate information and spatial smoothing in a design-consistent way. We propose a new smoothed model-assisted estimator that accounts for survey design and leverages both unit-level covariates and spatial smoothing, bridging the survey statistics and model-based geostatistics perspectives. Under certain assumptions, the new estimator can be viewed as both design-consistent and model-consistent, offering potential benefits from both perspectives. We demonstrate our estimator's performance using both real and simulated data, comparing it with existing design-based and model-based estimators.

We study sparse linear regression over a network of agents, modeled as an undirected graph and no server node. The estimation of the $s$-sparse parameter is formulated as a constrained LASSO problem wherein each agent owns a subset of the $N$ total observations. We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm under high-dimensional scaling, allowing the ambient dimension $d$ to grow with (and possibly exceed) the sample size $N$. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions, suitable conditions on the network connectivity and algorithm tuning, the distributed algorithm converges globally at a {\it linear} rate to an estimate that is within the centralized {\it statistical precision} of the model, $O(s\log d/N)$. When $s\log d/N=o(1)$, a condition necessary for statistical consistency, an $\varepsilon$-optimal solution is attained after $\mathcal{O}(\kappa \log (1/\varepsilon))$ gradient computations and $O (\kappa/(1-\rho) \log (1/\varepsilon))$ communication rounds, where $\kappa$ is the restricted condition number of the loss function and $\rho$ measures the network connectivity. The computation cost matches that of the centralized projected gradient algorithm despite having data distributed; whereas the communication rounds reduce as the network connectivity improves. Overall, our study reveals interesting connections between statistical efficiency, network connectivity \& topology, and convergence rate in high dimensions.

Objective: The aims of the study were to examine the association between social media sentiments surrounding COVID-19 vaccination and the effects on vaccination rates in the United States (US), as well as other contributing factors to the COVID-19 vaccine hesitancy. Method: The dataset used in this study consists of vaccine-related English tweets collected in real-time from January 4 - May 11, 2021, posted within the US, as well as health literacy (HL), social vulnerability index (SVI), and vaccination rates at the state level. Results: The findings presented in this study demonstrate a significant correlation between the sentiments of the tweets and the vaccination rate in the US. The results also suggest a significant negative association between HL and SVI and that the state demographics correlate with both HL and SVI. Discussion: Social media activity provides insights into public opinion about vaccinations and helps determine the required public health interventions to increase the vaccination rate in the US. Conclusion: Health literacy, social vulnerability index and monitoring of social media sentiments need to be considered in public health interventions as part of vaccination campaigns.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation has significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium. However, it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this paper, we give the first uncoupled no-regret dynamics that converge to the set of EFCEs in $n$-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions at each decision point.

Existing multi-agent reinforcement learning methods are limited typically to a small number of agents. When the agent number increases largely, the learning becomes intractable due to the curse of the dimensionality and the exponential growth of agent interactions. In this paper, we present Mean Field Reinforcement Learning where the interactions within the population of agents are approximated by those between a single agent and the average effect from the overall population or neighboring agents; the interplay between the two entities is mutually reinforced: the learning of the individual agent's optimal policy depends on the dynamics of the population, while the dynamics of the population change according to the collective patterns of the individual policies. We develop practical mean field Q-learning and mean field Actor-Critic algorithms and analyze the convergence of the solution to Nash equilibrium. Experiments on Gaussian squeeze, Ising model, and battle games justify the learning effectiveness of our mean field approaches. In addition, we report the first result to solve the Ising model via model-free reinforcement learning methods.

北京阿比特科技有限公司