亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We address the joint problem of learning and scheduling in multi-hop wireless network without a prior knowledge on link rates. Previous scheduling algorithms need the link rate information, and learning algorithms often require a centralized entity and polynomial complexity. These become a major obstacle to develop an efficient learning-based distributed scheme for resource allocation in large-scale multi-hop networks. In this work, by incorporating with learning algorithm, we develop provably efficient scheduling scheme under packet arrival dynamics without a priori link rate information. We extend the results to distributed implementation and evaluation their performance through simulations.

相關內容

Explanation:無線網。 Publisher:Springer。 SIT:

This paper proposes to use graph neural networks (GNNs) for equalization, that can also be used to perform joint equalization and decoding (JED). For equalization, the GNN is build upon the factor graph representations of the channel, while for JED, the factor graph is expanded by the Tanner graph of the parity-check matrix (PCM) of the channel code, sharing the variable nodes (VNs). A particularly advantageous property of the GNN is the robustness against cycles in the factor graphs which is the main problem for belief propagation (BP)-based equalization. As a result of having a fully deep learning-based receiver, joint optimization instead of individual optimization of the components is enabled, so-called end-to-end learning. Furthermore, we propose a parallel flooding schedule that further reduces the latency, which turns out to improve also the error correcting performance. The proposed approach is analyzed and compared to state-of-the-art baselines in terms of error correcting capability and latency. At a fixed low latency, the flooding GNN for JED demonstrates a gain of 2.25 dB in bit error rate (BER) compared to an iterative Bahl--Cock--Jelinek--Raviv (BCJR)-BP baseline.

Answering complex logical queries on incomplete knowledge graphs (KGs) is a fundamental and challenging task in multi-hop reasoning. Recent work defines this task as an end-to-end optimization problem, which significantly reduces the training cost and enhances the generalization of the model by a pretrained link predictors for query answering. However, most existing proposals ignore the critical semantic knowledge inherently available in KGs, such as type information, which could help answer complex logical queries. To this end, we propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs to discover the latent relationships between entities and relations by leveraging type information in KGs. Meanwhile, in order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced, which is trained by back-propagating during the complex query answering process to achieve adaptive adjustment of neural link predictors. Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering with good generalization and robustness.

Score-based statistical models play an important role in modern machine learning, statistics, and signal processing. For hypothesis testing, a score-based hypothesis test is proposed in \cite{wu2022score}. We analyze the performance of this score-based hypothesis testing procedure and derive upper bounds on the probabilities of its Type I and II errors. We prove that the exponents of our error bounds are asymptotically (in the number of samples) tight for the case of simple null and alternative hypotheses. We calculate these error exponents explicitly in specific cases and provide numerical studies for various other scenarios of interest.

Due to an ever-increasing number of participants and new areas of application, the demands on mobile communications systems are continually increasing. In order to deliver higher data rates, enable mobility and guarantee QoS requirements of subscribers, these systems and the protocols used are becoming more complex. By using higher frequency spectrums, cells become smaller and more base stations have to be deployed. This leads to an increased number of handovers of user equipments between base stations in order to enable mobility, resulting in potentially more frequent radio link failures and rate reduction. The persistent switching between the same base stations, commonly referred to as "ping-pong", leads to a consistent reduction of data rates. In this work, we propose a method for handover optimization by using proximal policy optimization in mobile communications to learn an adaptive handover protocol. The resulting agent is highly flexible regarding different travelling speeds of user equipments, while outperforming the standard 5G NR handover protocol by 3GPP in terms of average data rate and number of radio link failures. Furthermore, the design of the proposed environment demonstrates remarkable accuracy, ensuring a fair comparison with the standard 3GPP protocol.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司