We present LQR-CBF-RRT*, an incremental sampling-based algorithm for offline motion planning. Our framework leverages the strength of Control Barrier Functions (CBFs) and Linear Quadratic Regulators (LQR) to generate safety-critical and optimal trajectories for a robot with dynamics described by an affine control system. CBFs are used for safety guarantees, while LQRs are employed for optimal control synthesis during edge extensions. Popular CBF-based formulations for safety critical control require solving Quadratic Programs (QPs), which can be computationally expensive. Moreover, LQR-based controllers require repetitive applications of first-order Taylor approximations for nonlinear systems, which can also create an additional computational burden. To improve the motion planning efficiency, we verify the satisfaction of the CBF constraints directly in edge extension to avoid the burden of solving the QPs. We store computed optimal LQR gain matrices in a hash table to avoid re-computation during the local linearization of the rewiring procedure. Lastly, we utilize the Cross-Entropy Method for importance sampling to improve sampling efficiency. Our results show that the proposed planner surpasses its counterparts in computational efficiency and performs well in an experimental setup.
We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.
Text-to-3D with diffusion models have achieved remarkable progress in recent years. However, existing methods either rely on score distillation-based optimization which suffer from slow inference, low diversity and Janus problems, or are feed-forward methods that generate low quality results due to the scarcity of 3D training data. In this paper, we propose Instant3D, a novel method that generates high-quality and diverse 3D assets from text prompts in a feed-forward manner. We adopt a two-stage paradigm, which first generates a sparse set of four structured and consistent views from text in one shot with a fine-tuned 2D text-to-image diffusion model, and then directly regresses the NeRF from the generated images with a novel transformer-based sparse-view reconstructor. Through extensive experiments, we demonstrate that our method can generate high-quality, diverse and Janus-free 3D assets within 20 seconds, which is two order of magnitude faster than previous optimization-based methods that can take 1 to 10 hours. Our project webpage: //jiahao.ai/instant3d/.
Latent Consistency Models (LCMs) have achieved impressive performance in accelerating text-to-image generative tasks, producing high-quality images with minimal inference steps. LCMs are distilled from pre-trained latent diffusion models (LDMs), requiring only ~32 A100 GPU training hours. This report further extends LCMs' potential in two aspects: First, by applying LoRA distillation to Stable-Diffusion models including SD-V1.5, SSD-1B, and SDXL, we have expanded LCM's scope to larger models with significantly less memory consumption, achieving superior image generation quality. Second, we identify the LoRA parameters obtained through LCM distillation as a universal Stable-Diffusion acceleration module, named LCM-LoRA. LCM-LoRA can be directly plugged into various Stable-Diffusion fine-tuned models or LoRAs without training, thus representing a universally applicable accelerator for diverse image generation tasks. Compared with previous numerical PF-ODE solvers such as DDIM, DPM-Solver, LCM-LoRA can be viewed as a plug-in neural PF-ODE solver that possesses strong generalization abilities. Project page: //github.com/luosiallen/latent-consistency-model.
HDSDP is a numerical software solving the semidefinite programming problems. The main framework of HDSDP resembles the dual-scaling interior point solver DSDP [BY2008] and several new features, including a dual method based on the simplified homogeneous self-dual embedding, have been implemented. The embedding technique enhances stability of the dual method and several new heuristics and computational techniques are designed to accelerate its convergence. HDSDP aims to show how dual-scaling algorithm benefits from the self-dual embedding and it is developed in parallel to DSDP5.8. Numerical experiments over several classical benchmark datasets exhibit its robustness and efficiency, and particularly its advantages on SDP instances featuring low-rank structure and sparsity. HDSDP is open-sourced under MIT license and available at //github.com/COPT-Public/HDSDP.
The Function-as-a-Service (FaaS) execution model increases developer productivity by removing operational concerns such as managing hardware or software runtimes. Developers, however, still need to partition their applications into FaaS functions, which is error-prone and complex: Encapsulating only the smallest logical unit of an application as a FaaS function maximizes flexibility and reusability. Yet, it also leads to invocation overheads, additional cold starts, and may increase cost due to double billing during synchronous invocations. Conversely, deploying an entire application as a single FaaS function avoids these overheads but decreases flexibility. In this paper we present Fusionize, a framework that automates optimizing for this trade-off by automatically fusing application code into an optimized multi-function composition. Developers only need to write fine-grained application code following the serverless model, while Fusionize automatically fuses different parts of the application into FaaS functions, manages their interactions, and configures the underlying infrastructure. At runtime, it monitors application performance and adapts it to minimize request-response latency and costs. Real-world use cases show that Fusionize can improve the deployment artifacts of the application, reducing both median request-response latency and cost of an example IoT application by more than 35%.
In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.
Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.