A significant number of equity funds are preferred by index funds nowadays, and market sensitivities are instrumental in managing them. Index funds might replicate the index identically, which is, however, cost-ineffective and impractical. Moreover, to utilize market sensitivities to replicate the index partially, they must be predicted or estimated accurately. Accordingly, first, we examine deep learning models to predict market sensitivities. Also, we present pragmatic applications of data processing methods to aid training and generate target data for the prediction. Then, we propose a partial-index-tracking optimization model controlling the net predicted market sensitivities of the portfolios and index to be the same. These processes' efficacy is corroborated by the Korea Stock Price Index 200. Our experiments show a significant reduction of the prediction errors compared with historical estimations, and competitive tracking errors of replicating the index using fewer than half of the entire constituents. Therefore, we show that applying deep learning to predict market sensitivities is promising and that our portfolio construction methods are practically effective. Additionally, to our knowledge, this is the first study that addresses market sensitivities focused on deep learning.
We study online convex optimization with constraints consisting of multiple functional constraints and a relatively simple constraint set, such as a Euclidean ball. As enforcing the constraints at each time step through projections is computationally challenging in general, we allow decisions to violate the functional constraints but aim to achieve a low regret and cumulative violation of the constraints over a horizon of $T$ time steps. First-order methods achieve an $\mathcal{O}(\sqrt{T})$ regret and an $\mathcal{O}(1)$ constraint violation, which is the best-known bound under the Slater's condition, but do not take into account the structural information of the problem. Furthermore, the existing algorithms and analysis are limited to Euclidean space. In this paper, we provide an \emph{instance-dependent} bound for online convex optimization with complex constraints obtained by a novel online primal-dual mirror-prox algorithm. Our instance-dependent regret is quantified by the total gradient variation $V_*(T)$ in the sequence of loss functions. The proposed algorithm works in \emph{general} normed spaces and simultaneously achieves an $\mathcal{O}(\sqrt{V_*(T)})$ regret and an $\mathcal{O}(1)$ constraint violation, which is never worse than the best-known $( \mathcal{O}(\sqrt{T}), \mathcal{O}(1) )$ result and improves over previous works that applied mirror-prox-type algorithms for this problem achieving $\mathcal{O}(T^{2/3})$ regret and constraint violation. Finally, our algorithm is computationally efficient, as it only performs mirror descent steps in each iteration instead of solving a general Lagrangian minimization problem.
Lottery tickets (LTs) is able to discover accurate and sparse subnetworks that could be trained in isolation to match the performance of dense networks. Ensemble, in parallel, is one of the oldest time-proven tricks in machine learning to improve performance by combining the output of multiple independent models. However, the benefits of ensemble in the context of LTs will be diluted since ensemble does not directly lead to stronger sparse subnetworks, but leverages their predictions for a better decision. In this work, we first observe that directly averaging the weights of the adjacent learned subnetworks significantly boosts the performance of LTs. Encouraged by this observation, we further propose an alternative way to perform an 'ensemble' over the subnetworks identified by iterative magnitude pruning via a simple interpolating strategy. We call our method Lottery Pools. In contrast to the naive ensemble which brings no performance gains to each single subnetwork, Lottery Pools yields much stronger sparse subnetworks than the original LTs without requiring any extra training or inference cost. Across various modern architectures on CIFAR-10/100 and ImageNet, we show that our method achieves significant performance gains in both, in-distribution and out-of-distribution scenarios. Impressively, evaluated with VGG-16 and ResNet-18, the produced sparse subnetworks outperform the original LTs by up to 1.88% on CIFAR-100 and 2.36% on CIFAR-100-C; the resulting dense network surpasses the pre-trained dense-model up to 2.22% on CIFAR-100 and 2.38% on CIFAR-100-C.
This paper considers multi-agent reinforcement learning (MARL) where the rewards are received after delays and the delay time varies among agents. Based on the V-learning framework, this paper proposes MARL algorithms that efficiently deal with reward delays. When the delays are finite, our algorithm reaches a coarse correlated equilibrium (CCE) with rate $\tilde{\mathcal{O}}(\frac{H^3\sqrt{S\mathcal{T}_K}}{K}+\frac{H^3\sqrt{SA}}{\sqrt{K}})$ where $K$ is the number of episodes, $H$ is the planning horizon, $S$ is the size of the state space, $A$ is the size of the largest action space, and $\mathcal{T}_K$ is the measure of the total delay defined in the paper. Moreover, our algorithm can be extended to cases with infinite delays through a reward skipping scheme. It achieves convergence rate similar to the finite delay case.
Online learning naturally arises in many statistical and machine learning problems. The most widely used methods in online learning are stochastic first-order algorithms. Among this family of algorithms, there is a recently developed algorithm, Recursive One-Over-T SGD (ROOT-SGD). ROOT-SGD is advantageous in that it converges at a non-asymptotically fast rate, and its estimator further converges to a normal distribution. However, this normal distribution has unknown asymptotic covariance; thus cannot be directly applied to measure the uncertainty. To fill this gap, we develop two estimators for the asymptotic covariance of ROOT-SGD. Our covariance estimators are useful for statistical inference in ROOT-SGD. Our first estimator adopts the idea of plug-in. For each unknown component in the formula of the asymptotic covariance, we substitute it with its empirical counterpart. The plug-in estimator converges at the rate $\mathcal{O}(1/\sqrt{t})$, where $t$ is the sample size. Despite its quick convergence, the plug-in estimator has the limitation that it relies on the Hessian of the loss function, which might be unavailable in some cases. Our second estimator is a Hessian-free estimator that overcomes the aforementioned limitation. The Hessian-free estimator uses the random-scaling technique, and we show that it is an asymptotically consistent estimator of the true covariance.
Relying on others can be as risky as it can be rewarding. Advice seekers must disentangle good advice from bad, and balance the potential benefits of shared wisdom against the risks of being misled. Groups are most effective at sharing information and solving problems together when everyone is sensitive to ``who knows what.'' Acquiring such knowledge in the first place, however, is not trivial -- especially in contexts where background information is limited. What underlying cognitive abilities are needed for social learning to be useful in information-limited environments? Here, we propose that the capacity for flexible social inference plays a key role in human group behavior, allowing latent properties such as success or skill to be inferred from others' outward behavior even when there is no direct access to others' private rewards and "success" manifests differently from context to context. We begin by formalizing our proposal in a cognitive model and comparing this model's predictions against those of simpler heuristics in a series of computational simulations. We then evaluated these predictions in three large-scale behavioral experiments using a multi-agent search paradigm with hidden rewards. In Experiment 1, we found that average performance improves as a function of group size at a rate predicted by our model but not by three simpler alternatives. In Experiment 2, we placed human participants in controlled scenarios with artificial agents to more systematically evaluate the conditions under which people choose to rely on social information. Finally, in Experiment 3, we generalized these findings to a more complex and noisy environment, suggesting regimes where inferences may break down. Taken together, we find that even the most rudimentary social cognition abilities may facilitate the characteristic flexibility of human collective behavior.
Information is often stored in a distributed and proprietary form, and agents who own information are often self-interested and require incentives to reveal their information. Suitable mechanisms are required to elicit and aggregate such distributed information for decision making. In this paper, we use simulations to investigate the use of decision markets as mechanisms in a multi-agent learning system to aggregate distributed information for decision-making in a contextual bandit problem. The system utilises strictly proper decision scoring rules to assess the accuracy of probabilistic reports from agents, which allows agents to learn to solve the contextual bandit problem jointly. Our simulations show that our multi-agent system with distributed information can be trained as efficiently as a centralised counterpart with a single agent that receives all information. Moreover, we use our system to investigate scenarios with deterministic decision scoring rules which are not incentive compatible. We observe the emergence of more complex dynamics with manipulative behaviour, which agrees with existing theoretical analyses.
Multimodal learning helps to comprehensively understand the world, by integrating different senses. Accordingly, multiple input modalities are expected to boost model performance, but we actually find that they are not fully exploited even when the multimodal model outperforms its uni-modal counterpart. Specifically, in this paper we point out that existing multimodal discriminative models, in which uniform objective is designed for all modalities, could remain under-optimized uni-modal representations, caused by another dominated modality in some scenarios, e.g., sound in blowing wind event, vision in drawing picture event, etc. To alleviate this optimization imbalance, we propose on-the-fly gradient modulation to adaptively control the optimization of each modality, via monitoring the discrepancy of their contribution towards the learning objective. Further, an extra Gaussian noise that changes dynamically is introduced to avoid possible generalization drop caused by gradient modulation. As a result, we achieve considerable improvement over common fusion methods on different multimodal tasks, and this simple strategy can also boost existing multimodal methods, which illustrates its efficacy and versatility. The source code is available at \url{//github.com/GeWu-Lab/OGM-GE_CVPR2022}.
Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan