亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decentralized social media platforms like Bluesky Social (Bluesky) have made it possible to publicly disclose some user behaviors with millisecond-level precision. Embracing Bluesky's principles of open-source and open-data, we present the first collection of the temporal dynamics of user-driven social interactions. BlueTempNet integrates multiple types of networks into a single multi-network, including user-to-user interactions (following and blocking users) and user-to-community interactions (creating and joining communities). Communities are user-formed groups in custom Feeds, where users subscribe to posts aligned with their interests. Following Bluesky's public data policy, we collect existing Bluesky Feeds, including the users who liked and generated these Feeds, and provide tools to gather users' social interactions within a date range. This data-collection strategy captures past user behaviors and supports the future data collection of user behavior.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · CRYPTO · MoDELS · 穩健性 · 分類模型 ·
2024 年 11 月 12 日

The rapid growth of social media has resulted in an large volume of user-generated content, particularly in niche domains such as cryptocurrency. This task focuses on developing robust classification models to accurately categorize cryptocurrency-related social media posts into predefined classes, including but not limited to objective, positive, negative, etc. Additionally, the task requires participants to identify the most relevant answers from a set of posts in response to specific questions. By leveraging advanced LLMs, this research aims to enhance the understanding and filtering of cryptocurrency discourse, thereby facilitating more informed decision-making in this volatile sector. We have used a prompt-based technique to solve the classification task for reddit posts and twitter posts. Also, we have used 64-shot technique along with prompts on GPT-4-Turbo model to determine whether a answer is relevant to a question or not.

Although people are impressed by the content generation skills of large language models, the use of LLMs, such as ChatGPT, is limited by the domain grounding of the content. The correctness and groundedness of the generated content need to be based on a verified context, such as results from Retrieval-Augmented Generation (RAG). One important issue when adapting LLMs to a customized domain is that the generated responses are often incomplete, or the additions are not verified and may even be hallucinated. Prior studies on hallucination detection have focused on evaluation metrics, which are not easily adaptable to dynamic domains and can be vulnerable to attacks like jail-breaking. In this work, we propose 1) a post-processing algorithm that leverages knowledge triplets in RAG context to correct hallucinations and 2) a dual-decoder model that fuses RAG context to guide the generation process.

Recent advances in Large Language Models (LLMs) have revolutionized code generation, leading to widespread adoption of AI coding tools by developers. However, LLMs can generate license-protected code without providing the necessary license information, leading to potential intellectual property violations during software production. This paper addresses the critical, yet underexplored, issue of license compliance in LLM-generated code by establishing a benchmark to evaluate the ability of LLMs to provide accurate license information for their generated code. To establish this benchmark, we conduct an empirical study to identify a reasonable standard for "striking similarity" that excludes the possibility of independent creation, indicating a copy relationship between the LLM output and certain open-source code. Based on this standard, we propose LiCoEval, to evaluate the license compliance capabilities of LLMs, i.e., the ability to provide accurate license or copyright information when they generate code with striking similarity to already existing copyrighted code. Using LiCoEval, we evaluate 14 popular LLMs, finding that even top-performing LLMs produce a non-negligible proportion (0.88% to 2.01%) of code strikingly similar to existing open-source implementations. Notably, most LLMs fail to provide accurate license information, particularly for code under copyleft licenses. These findings underscore the urgent need to enhance LLM compliance capabilities in code generation tasks. Our study provides a foundation for future research and development to improve license compliance in AI-assisted software development, contributing to both the protection of open-source software copyrights and the mitigation of legal risks for LLM users.

Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, but their output may not be aligned with the user or even produce harmful content. This paper presents a novel approach to detect and steer concepts such as toxicity before generation. We introduce the Sparse Conditioned Autoencoder (SCAR), a single trained module that extends the otherwise untouched LLM. SCAR ensures full steerability, towards and away from concepts (e.g., toxic content), without compromising the quality of the model's text generation on standard evaluation benchmarks. We demonstrate the effective application of our approach through a variety of concepts, including toxicity, safety, and writing style alignment. As such, this work establishes a robust framework for controlling LLM generations, ensuring their ethical and safe deployment in real-world applications.

We conduct a large-scale empirical user study in a live setup to evaluate the acceptance of LLM-generated comments and their impact on the review process. This user study was performed in two organizations, Mozilla (which has its codebase available as open source) and Ubisoft (fully closed-source). Inside their usual review environment, participants were given access to RevMate, an LLM-based assistive tool suggesting generated review comments using an off-the-shelf LLM with Retrieval Augmented Generation to provide extra code and review context, combined with LLM-as-a-Judge, to auto-evaluate the generated comments and discard irrelevant cases. Based on more than 587 patch reviews provided by RevMate, we observed that 8.1% and 7.2%, respectively, of LLM-generated comments were accepted by reviewers in each organization, while 14.6% and 20.5% other comments were still marked as valuable as review or development tips. Refactoring-related comments are more likely to be accepted than Functional comments (18.2% and 18.6% compared to 4.8% and 5.2%). The extra time spent by reviewers to inspect generated comments or edit accepted ones (36/119), yielding an overall median of 43s per patch, is reasonable. The accepted generated comments are as likely to yield future revisions of the revised patch as human-written comments (74% vs 73% at chunk-level).

As Large Language Models (LLMs) continue to advance in natural language processing (NLP), their ability to stably follow instructions in long-context inputs has become crucial for real-world applications. While existing benchmarks assess various LLM capabilities, they rarely focus on instruction-following in long-context scenarios or stability on different inputs. In response, we introduce the Long-context Instruction-Following Benchmark (LIFBench), a scalable dataset designed to evaluate LLMs' instruction-following capabilities and stability across long contexts. LIFBench comprises three long-context scenarios and eleven diverse tasks, supported by 2,766 instructions generated through an automated expansion method across three dimensions: length, expression, and variables. For evaluation, we propose LIFEval, a rubric-based assessment framework that provides precise, automated scoring of complex LLM responses without relying on LLM-assisted evaluations or human judgments. This approach facilitates a comprehensive analysis of model performance and stability across various perspectives. We conduct extensive experiments on 20 notable LLMs across six length intervals, analyzing their instruction-following capabilities and stability. Our work contributes LIFBench and LIFEval as robust tools for assessing LLM performance in complex, long-context settings, providing insights that can inform future LLM development.

Implicit user feedback, user emotions and demographic information have shown to be promising sources for improving the accuracy and user engagement of responses generated by dialogue systems. However, the influence of such information on task completion and factual consistency, which are important criteria for task-oriented and document-grounded dialogues, is not yet known. To address this, we introduce FEDI, the first English task-oriented and document-grounded dialogue dataset annotated with this information. Our experiments with Flan-T5, GPT-2 and Llama 2 show a particularly positive impact on task completion and factual consistency. Participants in our human evaluation reported that the responses generated by the feedback-trained models were more informative (Flan-T5 and GPT-2), relevant and factual consistent (Llama 2).

Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data, making applications like image captioning, visual question answering, and multi-modal content creation possible. This ability to understand and work with complex information has made MLLMs useful in areas such as healthcare, autonomous systems, and digital content. However, integrating multiple types of data also creates security risks. Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses. This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies. We break down these attacks into categories: simple visual tweaks and cross-modal manipulations, as well as advanced strategies like VLATTACK, HADES, and Collaborative Multimodal Adversarial Attack (Co-Attack). These attacks can mislead even the most robust models while looking nearly identical to the original visuals, making them hard to detect. We also discuss the broader security risks, including threats to privacy and safety in important applications. To counter these risks, we review current defense methods like the SmoothVLM framework, pixel-wise randomization, and MirrorCheck, looking at their strengths and limitations. We also discuss new methods to make MLLMs more secure, including adaptive defenses, better evaluation tools, and security approaches that protect both visual and text data. By bringing together recent developments and identifying key areas for improvement, this review aims to support the creation of more secure and reliable multi-modal AI systems for real-world use.

Short video platforms, such as YouTube, Instagram, or TikTok, are used by billions of users globally. These platforms expose users to harmful content, ranging from clickbait or physical harms to misinformation or online hate. Yet, detecting harmful videos remains challenging due to an inconsistent understanding of what constitutes harm and limited resources and mental tolls involved in human annotation. As such, this study advances measures and methods to detect harm in video content. First, we develop a comprehensive taxonomy for online harm on video platforms, categorizing it into six categories: Information, Hate and harassment, Addictive, Clickbait, Sexual, and Physical harms. Next, we establish multimodal large language models as reliable annotators of harmful videos. We analyze 19,422 YouTube videos using 14 image frames, 1 thumbnail, and text metadata, comparing the accuracy of crowdworkers (Mturk) and GPT-4-Turbo with domain expert annotations serving as the gold standard. Our results demonstrate that GPT-4-Turbo outperforms crowdworkers in both binary classification (harmful vs. harmless) and multi-label harm categorization tasks. Methodologically, this study extends the application of LLMs to multi-label and multi-modal contexts beyond text annotation and binary classification. Practically, our study contributes to online harm mitigation by guiding the definitions and identification of harmful content on video platforms.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

北京阿比特科技有限公司