亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Creating realistic, natural, and lip-readable talking face videos remains a formidable challenge. Previous research primarily concentrated on generating and aligning single-frame images while overlooking the smoothness of frame-to-frame transitions and temporal dependencies. This often compromised visual quality and effects in practical settings, particularly when handling complex facial data and audio content, which frequently led to semantically incongruent visual illusions. Specifically, synthesized videos commonly featured disorganized lip movements, making them difficult to understand and recognize. To overcome these limitations, this paper introduces the application of optical flow to guide facial image generation, enhancing inter-frame continuity and semantic consistency. We propose "OpFlowTalker", a novel approach that utilizes predicted optical flow changes from audio inputs rather than direct image predictions. This method smooths image transitions and aligns changes with semantic content. Moreover, it employs a sequence fusion technique to replace the independent generation of single frames, thus preserving contextual information and maintaining temporal coherence. We also developed an optical flow synchronization module that regulates both full-face and lip movements, optimizing visual synthesis by balancing regional dynamics. Furthermore, we introduce a Visual Text Consistency Score (VTCS) that accurately measures lip-readability in synthesized videos. Extensive empirical evidence validates the effectiveness of our approach.

相關內容

Recent advances in 3D AIGC have shown promise in directly creating 3D objects from text and images, offering significant cost savings in animation and product design. However, detailed edit and customization of 3D assets remains a long-standing challenge. Specifically, 3D Generation methods lack the ability to follow finely detailed instructions as precisely as their 2D image creation counterparts. Imagine you can get a toy through 3D AIGC but with undesired accessories and dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D, which swiftly creates customized 3D assets from editable dual-side images. We aim to emulate a tailor's ability to locally change objects or perform overall style transfer. Unlike creating 3D assets from multiple views, using dual-side images eliminates conflicts on overlapping areas that occur when editing individual views. Specifically, it begins by editing the front view, then generates the back view of the object through multi-view diffusion. Afterward, it proceeds to edit the back views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the front and back 3D features, akin to a tailor sewing together the front and back of a garment. The Dual-sided LRM rectifies imperfect consistencies between the front and back views, enhancing editing capabilities and reducing memory burdens while seamlessly integrating them into a unified 3D representation with the LoRA Triplane Transformer. Experimental results demonstrate Tailor3D's effectiveness across various 3D generation and editing tasks, including 3D generative fill and style transfer. It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.

We introduce MMIS, a novel dataset designed to advance MultiModal Interior Scene generation and recognition. MMIS consists of nearly 160,000 images. Each image within the dataset is accompanied by its corresponding textual description and an audio recording of that description, providing rich and diverse sources of information for scene generation and recognition. MMIS encompasses a wide range of interior spaces, capturing various styles, layouts, and furnishings. To construct this dataset, we employed careful processes involving the collection of images, the generation of textual descriptions, and corresponding speech annotations. The presented dataset contributes to research in multi-modal representation learning tasks such as image generation, retrieval, captioning, and classification.

Verbal videos, featuring voice-overs or text overlays, provide valuable content but present significant challenges in composition, especially when incorporating editing effects to enhance clarity and visual appeal. In this paper, we introduce the novel task of verbal video composition with editing effects. This task aims to generate coherent and visually appealing verbal videos by integrating multimodal editing effects across textual, visual, and audio categories. To achieve this, we curate a large-scale dataset of video effects compositions from publicly available sources. We then formulate this task as a generative problem, involving the identification of appropriate positions in the verbal content and the recommendation of editing effects for these positions. To address this task, we propose VCoME, a general framework that employs a large multimodal model to generate editing effects for video composition. Specifically, VCoME takes in the multimodal video context and autoregressively outputs where to apply effects within the verbal content and which effects are most appropriate for each position. VCoME also supports prompt-based control of composition density and style, providing substantial flexibility for diverse applications. Through extensive quantitative and qualitative evaluations, we clearly demonstrate the effectiveness of VCoME. A comprehensive user study shows that our method produces videos of professional quality while being 85$\times$ more efficient than professional editors.

We introduce Autoverse, an evolvable, domain-specific language for single-player 2D grid-based games, and demonstrate its use as a scalable training ground for Open-Ended Learning (OEL) algorithms. Autoverse uses cellular-automaton-like rewrite rules to describe game mechanics, allowing it to express various game environments (e.g. mazes, dungeons, sokoban puzzles) that are popular testbeds for Reinforcement Learning (RL) agents. Each rewrite rule can be expressed as a series of simple convolutions, allowing for environments to be parallelized on the GPU, thereby drastically accelerating RL training. Using Autoverse, we propose jump-starting open-ended learning by imitation learning from search. In such an approach, we first evolve Autoverse environments (their rules and initial map topology) to maximize the number of iterations required by greedy tree search to discover a new best solution, producing a curriculum of increasingly complex environments and playtraces. We then distill these expert playtraces into a neural-network-based policy using imitation learning. Finally, we use the learned policy as a starting point for open-ended RL, where new training environments are continually evolved to maximize the RL player agent's value function error (a proxy for its regret, or the learnability of generated environments), finding that this approach improves the performance and generality of resultant player agents.

Adding game elements to higher education is an increasingly common practice. As a result, many recent empirical studies focus on studying the effectiveness of gamified or game-based educational experiences. The findings of these studies are very diverse, showing both positive and negative effects, and thus calling for comparative meta-studies. In this paper we review and analyze different studies, aiming to summarise and evaluate controlled experiments conducted within different scientific disciplines. We focus on the clarity of non-experimental conditions' descriptions and show that in most cases a. educational methods used in control groups' activities are poorly described, b. educational materials used in control groups' activities are often unclear, and c. the starting conditions are unclear. We also noticed that studies in the fields of computer science and engineering, in general, report results more clearly than in other fields. Based on the above finding, we conclude with a few recommendations for the execution of future empirical studies of games in education for the sake of allowing a more structured comparison.

This work aims to advance sound event detection (SED) research by presenting a new large language model (LLM)-powered dataset namely wild domestic environment sound event detection (WildDESED). It is crafted as an extension to the original DESED dataset to reflect diverse acoustic variability and complex noises in home settings. We leveraged LLMs to generate eight different domestic scenarios based on target sound categories of the DESED dataset. Then we enriched the scenarios with a carefully tailored mixture of noises selected from AudioSet and ensured no overlap with target sound. We consider widely popular convolutional neural recurrent network to study WildDESED dataset, which depicts its challenging nature. We then apply curriculum learning by gradually increasing noise complexity to enhance the model's generalization capabilities across various noise levels. Our results with this approach show improvements within the noisy environment, validating the effectiveness on the WildDESED dataset promoting noise-robust SED advancements.

Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司