Adjusting for latent covariates is crucial for estimating causal effects from observational textual data. Most existing methods only account for confounding covariates that affect both treatment and outcome, potentially leading to biased causal effects. This bias arises from insufficient consideration of non-confounding covariates, which are relevant only to either the treatment or the outcome. In this work, we aim to mitigate the bias by unveiling interactions between different variables to disentangle the non-confounding covariates when estimating causal effects from text. The disentangling process ensures covariates only contribute to their respective objectives, enabling independence between variables. Additionally, we impose a constraint to balance representations from the treatment group and control group to alleviate selection bias. We conduct experiments on two different treatment factors under various scenarios, and the proposed model significantly outperforms recent strong baselines. Furthermore, our thorough analysis on earnings call transcripts demonstrates that our model can effectively disentangle the variables, and further investigations into real-world scenarios provide guidance for investors to make informed decisions.
Combinatorial Optimization (CO) problems over graphs appear routinely in many applications such as in optimizing traffic, viral marketing in social networks, and matching for job allocation. Due to their combinatorial nature, these problems are often NP-hard. Existing approximation algorithms and heuristics rely on the search space to find the solutions and become time-consuming when this space is large. In this paper, we design a neural method called COMBHelper to reduce this space and thus improve the efficiency of the traditional CO algorithms based on node selection. Specifically, it employs a Graph Neural Network (GNN) to identify promising nodes for the solution set. This pruned search space is then fed to the traditional CO algorithms. COMBHelper also uses a Knowledge Distillation (KD) module and a problem-specific boosting module to bring further efficiency and efficacy. Our extensive experiments show that the traditional CO algorithms with COMBHelper are at least 2 times faster than their original versions.
Statistical shape modeling (SSM) is an essential tool for analyzing variations in anatomical morphology. In a typical SSM pipeline, 3D anatomical images, gone through segmentation and rigid registration, are represented using lower-dimensional shape features, on which statistical analysis can be performed. Various methods for constructing compact shape representations have been proposed, but they involve laborious and costly steps. We propose Image2SSM, a novel deep-learning-based approach for SSM that leverages image-segmentation pairs to learn a radial-basis-function (RBF)-based representation of shapes directly from images. This RBF-based shape representation offers a rich self-supervised signal for the network to estimate a continuous, yet compact representation of the underlying surface that can adapt to complex geometries in a data-driven manner. Image2SSM can characterize populations of biological structures of interest by constructing statistical landmark-based shape models of ensembles of anatomical shapes while requiring minimal parameter tuning and no user assistance. Once trained, Image2SSM can be used to infer low-dimensional shape representations from new unsegmented images, paving the way toward scalable approaches for SSM, especially when dealing with large cohorts. Experiments on synthetic and real datasets show the efficacy of the proposed method compared to the state-of-art correspondence-based method for SSM.
Current prompting approach for language model inference mainly rely on Language Model's (LLM) autonomous exploration of reasoning paths, confronts an inevitable retracing operation when erroneous routes are encountered. This is followed by the pursuit of alternative reasoning paths. However, humans are adept at abstracting optimal solutions from problems, thereby facilitating swift and precise reasoning for similar problems resolution. In light of this, we delves into the potential of harnessing expert knowledge to enhance problem-solving within LLMs. We introduce a novel paradigm, the State Machine of Thought (SMoT), which employs predefined state machines to furnish LLMs with efficient reasoning paths, thereby eliminating fruitless exploration. Furthermore, we propose a multi-agent mechanism that assigns different objectives to agents, aiming to enhance the accuracy of SMoT reasoning. The experimental results, derived from an array reasoning task, reveal that SMoT realizes an extraordinary accuracy of 95\%, surpassing the performance of the state-of-the-art baselines.
Earth system forecasting has traditionally relied on complex physical models that are computationally expensive and require significant domain expertise. In the past decade, the unprecedented increase in spatiotemporal Earth observation data has enabled data-driven forecasting models using deep learning techniques. These models have shown promise for diverse Earth system forecasting tasks but either struggle with handling uncertainty or neglect domain-specific prior knowledge, resulting in averaging possible futures to blurred forecasts or generating physically implausible predictions. To address these limitations, we propose a two-stage pipeline for probabilistic spatiotemporal forecasting: 1) We develop PreDiff, a conditional latent diffusion model capable of probabilistic forecasts. 2) We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints. This is achieved by estimating the deviation from imposed constraints at each denoising step and adjusting the transition distribution accordingly. We conduct empirical studies on two datasets: N-body MNIST, a synthetic dataset with chaotic behavior, and SEVIR, a real-world precipitation nowcasting dataset. Specifically, we impose the law of conservation of energy in N-body MNIST and anticipated precipitation intensity in SEVIR. Experiments demonstrate the effectiveness of PreDiff in handling uncertainty, incorporating domain-specific prior knowledge, and generating forecasts that exhibit high operational utility.
Instruction tuning, a specialized technique to enhance large language model (LLM) performance via instruction datasets, relies heavily on the quality of employed data. Existing quality improvement methods alter instruction data through dataset expansion or curation. However, the expansion method risks data redundancy, potentially compromising LLM performance, while the curation approach confines the LLM's potential to the original dataset. Our aim is to surpass the original data quality without encountering these shortcomings. To achieve this, we propose LIFT (LLM Instruction Fusion Transfer), a novel and versatile paradigm designed to elevate the instruction quality to new heights. LIFT strategically broadens data distribution to encompass more high-quality subspaces and eliminates redundancy, concentrating on high-quality segments across overall data subspaces. Experimental results demonstrate that, even with a limited quantity of high-quality instruction data selected by our paradigm, LLMs not only consistently uphold robust performance across various tasks but also surpass some state-of-the-art results, highlighting the significant improvement in instruction quality achieved by our paradigm.
The rapid accumulation of Earth observation data presents a formidable challenge for the processing capabilities of traditional remote sensing desktop software, particularly when it comes to analyzing expansive geographical areas and prolonged temporal sequences. Cloud computing has emerged as a transformative solution, surmounting the barriers traditionally associated with the management and computation of voluminous datasets. This paper introduces the Analytical Insight of Earth (AI Earth), an innovative remote sensing intelligent computing cloud platform, powered by the robust Alibaba Cloud infrastructure. AI Earth provides an extensive collection of publicly available remote sensing datasets, along with a suite of computational tools powered by a high-performance computing engine. Furthermore, it provides a variety of classic deep learning (DL) models and a novel remote sensing large vision segmentation model tailored to different recognition tasks. The platform enables users to upload their unique samples for model training and to deploy third-party models, thereby increasing the accessibility and openness of DL applications. This platform will facilitate researchers in leveraging remote sensing data for large-scale applied research in areas such as resources, environment, ecology, and climate.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.