Deciding what combination of operators to use across the Edge AI tiers to achieve specific latency and model performance requirements is an open question for MLOps engineers. This study aims to empirically assess the accuracy vs inference time trade-off of different black-box Edge AI deployment strategies, i.e., combinations of deployment operators and deployment tiers. In this paper, we conduct inference experiments involving 3 deployment operators (i.e., Partitioning, Quantization, Early Exit), 3 deployment tiers (i.e., Mobile, Edge, Cloud) and their combinations on four widely used Computer-Vision models to investigate the optimal strategies from the point of view of MLOps developers. Our findings suggest that Edge deployment using the hybrid Quantization + Early Exit operator could be preferred over non-hybrid operators (Quantization/Early Exit on Edge, Partition on Mobile-Edge) when faster latency is a concern at medium accuracy loss. However, when minimizing accuracy loss is a concern, MLOps engineers should prefer using only a Quantization operator on edge at a latency reduction or increase, respectively over the Early Exit/Partition (on edge/mobile-edge) and Quantized Early Exit (on edge) operators. In scenarios constrained by Mobile CPU/RAM resources, a preference for Partitioning across mobile and edge tiers is observed over mobile deployment. For models with smaller input data samples (such as FCN), a network-constrained cloud deployment can also be a better alternative than Mobile/Edge deployment and Partitioning strategies. For models with large input data samples (ResNet, ResNext, DUC), an edge tier having higher network/computational capabilities than Cloud/Mobile can be a more viable option than Partitioning and Mobile/Cloud deployment strategies.
Current autonomous driving systems heavily rely on V2X communication data to enhance situational awareness and the cooperation between vehicles. However, a major challenge when using V2X data is that it may not be available periodically because of unpredictable delays and data loss during wireless transmission between road stations and the receiver vehicle. This issue should be considered when designing control strategies for connected and autonomous vehicles. Therefore, this paper proposes a novel 'Blind Actor-Critic' algorithm that guarantees robust driving performance in V2X environment with delayed and/or lost data. The novel algorithm incorporates three key mechanisms: a virtual fixed sampling period, a combination of Temporal-Difference and Monte Carlo learning, and a numerical approximation of immediate reward values. To address the temporal aperiodicity problem of V2X data, we first illustrate this challenge. Then, we provide a detailed explanation of the Blind Actor-Critic algorithm where we highlight the proposed components to compensate for the temporal aperiodicity problem of V2X data. We evaluate the performance of our algorithm in a simulation environment and compare it to benchmark approaches. The results demonstrate that training metrics are improved compared to conventional actor-critic algorithms. Additionally, testing results show that our approach provides robust control, even under low V2X network reliability levels.
We study the problem of efficiently detecting Out-of-Distribution (OOD) samples at test time in supervised and unsupervised learning contexts. While ML models are typically trained under the assumption that training and test data stem from the same distribution, this is often not the case in realistic settings, thus reliably detecting distribution shifts is crucial at deployment. We re-formulate the OOD problem under the lenses of statistical testing and then discuss conditions that render the OOD problem identifiable in statistical terms. Building on this framework, we study convergence guarantees of an OOD test based on the Wasserstein distance, and provide a simple empirical evaluation.
Large Language Models (LLMs) deployed on edge devices learn through fine-tuning and updating a certain portion of their parameters. Although such learning methods can be optimized to reduce resource utilization, the overall required resources remain a heavy burden on edge devices. Instead, Retrieval-Augmented Generation (RAG), a resource-efficient LLM learning method, can improve the quality of the LLM-generated content without updating model parameters. However, the RAG-based LLM may involve repetitive searches on the profile data in every user-LLM interaction. This search can lead to significant latency along with the accumulation of user data. Conventional efforts to decrease latency result in restricting the size of saved user data, thus reducing the scalability of RAG as user data continuously grows. It remains an open question: how to free RAG from the constraints of latency and scalability on edge devices? In this paper, we propose a novel framework to accelerate RAG via Computing-in-Memory (CiM) architectures. It accelerates matrix multiplications by performing in-situ computation inside the memory while avoiding the expensive data transfer between the computing unit and memory. Our framework, Robust CiM-backed RAG (RoCR), utilizing a novel contrastive learning-based training method and noise-aware training, can enable RAG to efficiently search profile data with CiM. To the best of our knowledge, this is the first work utilizing CiM to accelerate RAG.
We propose the on-the-fly ensembling of a machine translation model with an LLM, prompted on the same task and input. We perform experiments on 4 language pairs (both directions) with varying data amounts. We find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and ensembling with an LLM can produce better translations than ensembling two stronger MT models. We combine our method with various techniques from LLM prompting, such as in context learning and translation context.
A two-wheeled self-balancing robot (TWSBR) is non-linear and unstable system. This study compares the performance of model-based and data-based control strategies for TWSBRs, with an explicit practical educational approach. Model-based control (MBC) algorithms such as Lead-Lag and PID control require a proficient dynamic modeling and mathematical manipulation to drive the linearized equations of motions and develop the appropriate controller. On the other side, data-based control (DBC) methods, like fuzzy control, provide a simpler and quicker approach to designing effective controllers without needing in-depth understanding of the system model. In this paper, the advantages and disadvantages of both MBC and DBC using a TWSBR are illustrated. All controllers were implemented and tested on the OSOYOO self-balancing kit, including an Arduino microcontroller, MPU-6050 sensor, and DC motors. The control law and the user interface are constructed using the LabVIEW-LINX toolkit. A real-time hardware-in-loop experiment validates the results, highlighting controllers that can be implemented on a cost-effective platform.
Miniaturization of cameras and LiDAR sensors has enabled the development of wearable 3D mapping systems for emergency responders. These systems have the potential to revolutionize response capabilities by providing real-time, high-fidelity maps of dynamic and hazardous environments. We present our recent efforts towards the development of such ultra-portable 3D mapping systems. We review four different sensor configurations, either helmet-mounted or body-worn, with two different mapping algorithms that were implemented and evaluated during field trials. The paper discusses the experimental results with the aim to stimulate further discussion within the portable 3D mapping research community.
Large Language Models (LLMs) have demonstrated unparalleled effectiveness in various NLP tasks, and integrating LLMs with automatic speech recognition (ASR) is becoming a mainstream paradigm. Building upon this momentum, our research delves into an in-depth examination of this paradigm on a large open-source Chinese dataset. Specifically, our research aims to evaluate the impact of various configurations of speech encoders, LLMs, and projector modules in the context of the speech foundation encoder-LLM ASR paradigm. Furthermore, we introduce a three-stage training approach, expressly developed to enhance the model's ability to align auditory and textual information. The implementation of this approach, alongside the strategic integration of ASR components, enabled us to achieve the SOTA performance on the AISHELL-1, Test_Net, and Test_Meeting test sets. Our analysis presents an empirical foundation for future research in LLM-based ASR systems and offers insights into optimizing performance using Chinese datasets. We will publicly release all scripts used for data preparation, training, inference, and scoring, as well as pre-trained models and training logs to promote reproducible research.
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.