亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove that for monic polynomials $f, g \in \mathbb{C}[x]$ such that $g$ divides $f$, the $\ell_2$-norm of the quotient polynomial $f/g$ is bounded by $\lVert f \rVert_1 \cdot \tilde{O}(\lVert{g}\rVert_0^3\text{deg}^2{ f})^{\lVert{g}\rVert_0 - 1}$. This improves upon the previously known exponential (in $\text{deg}{ f}$) bounds for general polynomials. Our results implies that the trivial long division algorithm runs in quasi-linear time relative to the input size and number of terms of the quotient polynomial $f/g$, thus solving a long-standing problem on exact divisibility of sparse polynomials. We also study the problem of bounding the number of terms of $f/g$ in some special cases. When $f, g \in \mathbb{Z}[x]$ and $g$ is a cyclotomic-free (i.e., it has no cyclotomic factors) trinomial, we prove that $\lVert{f/g}\rVert_0 \leq O(\lVert{f}\rVert_0 \text{size}({f})^2 \cdot \log^6{\text{deg}{ g}})$. When $g$ is a binomial with $g(\pm 1) \neq 0$, we prove that the sparsity is at most $O(\lVert{f}\rVert_0 ( \log{\lVert{f}\rVert_0} + \log{\lVert{f}\rVert_{\infty}}))$. Both upper bounds are polynomial in the input-size. We leverage these results and give a polynomial time algorithm for deciding whether a cyclotomic-free trinomial divides a sparse polynomial over the integers. As our last result, we present a polynomial time algorithm for testing divisibility by pentanomials over small finite fields when $\text{deg}{ f} = \tilde{O}(\text{deg}{ g})$.

相關內容

The Lov\'asz theta function $\theta(G)$ provides a very good upper bound on the stability number of a graph $G$. It can be computed in polynomial time by solving a semidefinite program (SDP), which also turns out to be fairly tractable in practice. Consequently, $\theta(G)$ achieves a hard-to-beat trade-off between computational effort and strength of the bound. Indeed, several attempts to improve the theta bound are documented, mainly based on playing around the application of the $N_+(\cdot)$ lifting operator of Lov\'asz and Schrijver to the classical formulation of the maximum stable set problem. Experience shows that solving such SDP-s often struggles against practical intractability and requires highly specialized methods. We investigate the application of such an operator to two different linear formulations based on clique and nodal inequalities, respectively. Fewer inequalities describe these two and yet guarantee that the resulting SDP bound is at least as strong as $\theta(G)$. Our computational experience, including larger graphs than those previously documented, shows that upper bounds stronger than $\theta(G)$ can be accessed by a reasonable additional effort using the clique-based formulation on sparse graphs and the nodal-based one on dense graphs.

A generator matrix of a linear code $\C$ over $\gf(q)$ is also a matrix of the same rank $k$ over any extension field $\gf(q^\ell)$ and generates a linear code of the same length, same dimension and same minimum distance over $\gf(q^\ell)$, denoted by $\C(q|q^\ell)$ and called a lifted code of $\C$. Although $\C$ and their lifted codes $\C(q|q^\ell)$ have the same parameters, they have different weight distributions and different applications. Few results about lifted linear codes are known in the literature. This paper proves some fundamental theory for lifted linear codes, settles the weight distributions of the lifted Hamming codes and lifted Simplex codes as well as the lifted Reed-Muller codes of certain orders, and investigates the $2$-designs and $3$-designs supported by these lifted codes. Infinite families of $2$-designs and $3$-designs are obtained. In addition, an infinite family of two-weight projective codes and two infinite families of three-weight projective codes are presented.

Attention involves comparing query and key vectors in terms of a scalar product, $\mathbf{Q}^T\mathbf{K}$, together with a subsequent softmax normalization. Classicaly, parallel/orthogonal/antiparallel queries and keys lead to large/intermediate/small attention weights. Here we study expressive attention (EA), which is based on $(\mathbf{Q}^T\mathbf{K})^2$, the squared dot product. In this case attention is enhanced when query and key are either parallel or antiparallel, and suppressed for orthogonal configurations. For a series of autoregressive prediction tasks, we find that EA performs at least as well as the standard mechanism, dot-product attention (DPA). Increasing task complexity, EA is observed to outperform DPA with increasing margins, which also holds for multi-task settings. For a given model size, EA manages to achieve 100\% performance for a range of complexity levels not accessible to DPA.

We study the parameterized complexity of algorithmic problems whose input is an integer set $A$ in terms of the doubling constant $C := |A + A|/|A|$, a fundamental measure of additive structure. We present evidence that this new parameterization is algorithmically useful in the form of new results for two difficult, well-studied problems: Integer Programming and Subset Sum. First, we show that determining the feasibility of bounded Integer Programs is a tractable problem when parameterized in the doubling constant. Specifically, we prove that the feasibility of an integer program $I$ with $n$ polynomially-bounded variables and $m$ constraints can be determined in time $n^{O_C(1)} poly(|I|)$ when the column set of the constraint matrix has doubling constant $C$. Second, we show that the Subset Sum and Unbounded Subset Sum problems can be solved in time $n^{O_C(1)}$ and $n^{O_C(\log \log \log n)}$, respectively, where the $O_C$ notation hides functions that depend only on the doubling constant $C$. We also show the equivalence of achieving an FPT algorithm for Subset Sum with bounded doubling and achieving a milestone result for the parameterized complexity of Box ILP. Finally, we design near-linear time algorithms for $k$-SUM as well as tight lower bounds for 4-SUM and nearly tight lower bounds for $k$-SUM, under the $k$-SUM conjecture. Several of our results rely on a new proof that Freiman's Theorem, a central result in additive combinatorics, can be made efficiently constructive. This result may be of independent interest.

We survey the complexity class $\exists \mathbb{R}$, which captures the complexity of deciding the existential theory of the reals. The class $\exists \mathbb{R}$ has roots in two different traditions, one based on the Blum-Shub-Smale model of real computation, and the other following work by Mn\"{e}v and Shor on the universality of realization spaces of oriented matroids. Over the years the number of problems for which $\exists \mathbb{R}$ rather than NP has turned out to be the proper way of measuring their complexity has grown, particularly in the fields of computational geometry, graph drawing, game theory, and some areas in logic and algebra. $\exists \mathbb{R}$ has also started appearing in the context of machine learning, Markov decision processes, and probabilistic reasoning. We have aimed at collecting a comprehensive compendium of problems complete and hard for $\exists \mathbb{R}$, as well as a long list of open problems. The compendium is presented in the third part of our survey; a tour through the compendium and the areas it touches on makes up the second part. The first part introduces the reader to the existential theory of the reals as a complexity class, discussing its history, motivation and prospects as well as some technical aspects.

A generator matrix of a linear code $\C$ over $\gf(q)$ is also a matrix of the same rank $k$ over any extension field $\gf(q^\ell)$ and generates a linear code of the same length, same dimension and same minimum distance over $\gf(q^\ell)$, denoted by $\C(q|q^\ell)$ and called a lifted code of $\C$. Although $\C$ and their lifted codes $\C(q|q^\ell)$ have the same parameters, they have different weight distributions and different applications. Few results about lifted linear codes are known in the literature. This paper proves some fundamental theory for lifted linear codes, settles the weight distributions of lifted Hamming codes and lifted Simplex codes, and investigates the $2$-designs supported by the lifted Hamming and Simplex codes. Infinite families of $2$-designs are obtained. In addition, an infinite family of two-weight codes and an infinite family of three-weight codes are presented.

We build a finite volume scheme for the scalar conservation law $\partial_t u + \partial_x (H(x, u)) = 0$ with bounded initial condition for a wide class of flux function $H$, convex with respect to the second variable. The main idea for the construction of the scheme is to use the theory of discontinuous flux. We prove that the resulting approximating sequence converges boundedly almost everywhere on $\mathopen]0, +\infty\mathclose[$ to the entropy solution.

We noisily observe solutions of an ordinary differential equation $\dot u = f(u)$ at given times, where $u$ lives in a $d$-dimensional state space. The model function $f$ is unknown and belongs to a H\"older-type smoothness class with parameter $\beta$. For the nonparametric problem of estimating $f$, we provide lower bounds on the error in two complementary model specifications: the snake model with few, long observed solutions and the stubble model with many short ones. The lower bounds are minimax optimal in some settings. They depend on various parameters, which in the optimal asymptotic regime leads to the same rate for the squared error in both models: it is characterized by the exponent $-2\beta/(2(\beta+1)+d)$ for the total number of observations $n$. To derive these results, we establish a master theorem for lower bounds in general nonparametric regression problems, which makes the proofs more comparable and seems to be a useful tool for future use.

We present a novel barycentric interpolation algorithm designed for analytic functions $f\in\mathcal{A}(E)$ defined on the complex plane. The algorithm, which encompasses both polynomial and rational interpolation, is tailored to handle singularities near $E$. Our method is applicable to regions $E$ bounded by piecewise smooth Jordan curves, and it imposes no connectivity restrictions on the region. The key feature of our approach lies in efficiently computing discrete points via the numerical solution of Symm's integral equation, enabling the construction of polynomial or rational barycentric interpolants. Furthermore, our method provides relevant parameters for the equilibrium potential, such as Robin's constant, which can be used to estimate convergence rates. Numerical experiments demonstrate the convergence rate achieved by our method in comparison to the theoretical convergence rate.

An eight-partition of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in $\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.

北京阿比特科技有限公司