The recent advancements in Transformer-based Language Models have demonstrated significant potential in enhancing the multilingual capabilities of these models. The remarkable progress made in this domain not only applies to natural language tasks but also extends to the domain of programming languages. Despite the ability of these models to learn from multiple languages, evaluations typically focus on particular combinations of the same languages. In this study, we evaluate the similarity of programming languages by analyzing their representations using a CodeBERT-based model. Our experiments reveal that token representation in languages such as C++, Python, and Java exhibit proximity to one another, whereas the same tokens in languages such as Mathematica and R display significant dissimilarity. Our findings suggest that this phenomenon can potentially result in performance challenges when dealing with diverse languages. Thus, we recommend using our similarity measure to select a diverse set of programming languages when training and evaluating future models.
Multi-Label Text Classification (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.
Recent advancements in understanding the impulse response of the first arrival position (FAP) channel in molecular communication (MC) have illuminated its Shannon capacity. While Lee et al. shed light on FAP channel capacities with vertical drifts, the zero-drift scenario remains a conundrum, primarily due to the challenges associated with the heavy-tailed Cauchy distributions whose first and second moments do not exist, rendering traditional mutual information constraints ineffective. This paper unveils a novel characterization of the zero drift FAP channel capacity for both 2D and 3D. Interestingly, our results reveal a 3D FAP channel capacity that is double its 2D counterpart, hinting at a capacity increase with spatial dimension growth. Furthermore, our approach, which incorporates a modified logarithmic constraint and an output signal constraint, offers a simplified and more intuitive formula (similar to the well-known Gaussian case) for estimating FAP channel capacity.
Counterfactually-Augmented Data (CAD) -- minimal editing of sentences to flip the corresponding labels -- has the potential to improve the Out-Of-Distribution (OOD) generalization capability of language models, as CAD induces language models to exploit domain-independent causal features and exclude spurious correlations. However, the empirical results of CAD's OOD generalization are not as efficient as anticipated. In this study, we attribute the inefficiency to the myopia phenomenon caused by CAD: language models only focus on causal features that are edited in the augmentation operation and exclude other non-edited causal features. Therefore, the potential of CAD is not fully exploited. To address this issue, we analyze the myopia phenomenon in feature space from the perspective of Fisher's Linear Discriminant, then we introduce two additional constraints based on CAD's structural properties (dataset-level and sentence-level) to help language models extract more complete causal features in CAD, thereby mitigating the myopia phenomenon and improving OOD generalization capability. We evaluate our method on two tasks: Sentiment Analysis and Natural Language Inference, and the experimental results demonstrate that our method could unlock the potential of CAD and improve the OOD generalization performance of language models by 1.0% to 5.9%.
Diffusion models have demonstrated highly-expressive generative capabilities in vision and NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are also powerful in modeling complex policies or trajectories in offline datasets. However, these works have been limited to single-task settings where a generalist agent capable of addressing multi-task predicaments is absent. In this paper, we aim to investigate the effectiveness of a single diffusion model in modeling large-scale multi-task offline data, which can be challenging due to diverse and multimodal data distribution. Specifically, we propose Multi-Task Diffusion Model (\textsc{MTDiff}), a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis in multi-task offline settings. \textsc{MTDiff} leverages vast amounts of knowledge available in multi-task data and performs implicit knowledge sharing among tasks. For generative planning, we find \textsc{MTDiff} outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D. For data synthesis, \textsc{MTDiff} generates high-quality data for testing tasks given a single demonstration as a prompt, which enhances the low-quality datasets for even unseen tasks.
Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT, Anthropic's Claude, or Meta's LLaMA-2. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e. supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties: out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the trade-off between generalisation and diversity.
Novel low-diameter network topologies such as Slim Fly (SF) offer significant cost and power advantages over the established Fat Tree, Clos, or Dragonfly. To spearhead the adoption of low-diameter networks, we design, implement, deploy, and evaluate the first real-world SF installation. We focus on deployment, management, and operational aspects of our test cluster with 200 servers and carefully analyze performance. We demonstrate techniques for simple cabling and cabling validation as well as a novel high-performance routing architecture for InfiniBand-based low-diameter topologies. Our real-world benchmarks show SF's strong performance for many modern workloads such as deep neural network training, graph analytics, or linear algebra kernels. SF outperforms non-blocking Fat Trees in scalability while offering comparable or better performance and lower cost for large network sizes. Our work can facilitate deploying SF while the associated (open-source) routing architecture is fully portable and applicable to accelerate any low-diameter interconnect.
The formulation of Mean Field Games (MFG) typically requires continuous differentiability of the Hamiltonian in order to determine the advective term in the Kolmogorov--Fokker--Planck equation for the density of players. However, in many cases of practical interest, the underlying optimal control problem may exhibit bang-bang controls, which typically lead to nondifferentiable Hamiltonians. We develop the analysis and numerical analysis of stationary MFG for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians. In particular, we propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the derivative of the Hamiltonian in terms of subdifferentials of convex functions. We establish existence of a weak solution to the MFG PDI system, and we further prove uniqueness under a similar monotonicity condition to the one considered by Lasry and Lions. We then propose a monotone finite element discretization of the problem, and we prove strong $H^1$-norm convergence of the approximations to the value function and strong $L^q$-norm convergence of the approximations of the density function. We illustrate the performance of the numerical method in numerical experiments featuring nonsmooth solutions.
This work considers a rather general and broad class of Markov chains, Ito chains that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one, as in most related papers. Moreover, our chain's drift and diffusion coefficient can be inexact to cover a wide range of applications such as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent, or Stochastic Gradient Boosting. We prove an upper bound for $W_{2}$-distance between laws of the Ito chain and the corresponding Stochastic Differential Equation. These results improve or cover most of the known estimates. Moreover, for some particular cases, our analysis is the first.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.