亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider selecting the top-$m$ alternatives from a finite number of alternatives via Monte Carlo simulation. Under a Bayesian framework, we formulate the sampling decision as a stochastic dynamic programming problem, and develop a sequential sampling policy that maximizes a value function approximation one-step look ahead. To show the asymptotic optimality of the proposed procedure, the asymptotically optimal sampling ratios which optimize large deviations rate of the probability of false selection for selecting top-$m$ alternatives has been rigorously defined. The proposed sampling policy is not only proved to be consistent but also achieves the asymptotically optimal sampling ratios. Numerical experiments demonstrate superiority of the proposed allocation procedure over existing ones.

相關內容

This paper studies Quasi Maximum Likelihood estimation of Dynamic Factor Models for large panels of time series. Specifically, we consider the case in which the autocorrelation of the factors is explicitly accounted for, and therefore the model has a state-space form. Estimation of the factors and their loadings is implemented through the Expectation Maximization (EM) algorithm, jointly with the Kalman smoother.~We prove that as both the dimension of the panel $n$ and the sample size $T$ diverge to infinity, up to logarithmic terms: (i) the estimated loadings are $\sqrt T$-consistent and asymptotically normal if $\sqrt T/n\to 0$; (ii) the estimated factors are $\sqrt n$-consistent and asymptotically normal if $\sqrt n/T\to 0$; (iii) the estimated common component is $\min(\sqrt n,\sqrt T)$-consistent and asymptotically normal regardless of the relative rate of divergence of $n$ and $T$. Although the model is estimated as if the idiosyncratic terms were cross-sectionally and serially uncorrelated and normally distributed, we show that these mis-specifications do not affect consistency. Moreover, the estimated loadings are asymptotically as efficient as those obtained with the Principal Components estimator, while the estimated factors are more efficient if the idiosyncratic covariance is sparse enough.~We then propose robust estimators of the asymptotic covariances, which can be used to conduct inference on the loadings and to compute confidence intervals for the factors and common components. Finally, we study the performance of our estimators and we compare them with the traditional Principal Components approach through MonteCarlo simulations and analysis of US macroeconomic data.

Despite their success, policy gradient methods suffer from high variance of the gradient estimate, which can result in unsatisfactory sample complexity. Recently, numerous variance-reduced extensions of policy gradient methods with provably better sample complexity and competitive numerical performance have been proposed. After a compact survey on some of the main variance-reduced REINFORCE-type methods, we propose ProbAbilistic Gradient Estimation for Policy Gradient (PAGE-PG), a novel loopless variance-reduced policy gradient method based on a probabilistic switch between two types of updates. Our method is inspired by the PAGE estimator for supervised learning and leverages importance sampling to obtain an unbiased gradient estimator. We show that PAGE-PG enjoys a $\mathcal{O}\left( \epsilon^{-3} \right)$ average sample complexity to reach an $\epsilon$-stationary solution, which matches the sample complexity of its most competitive counterparts under the same setting. A numerical evaluation confirms the competitive performance of our method on classical control tasks.

Policy gradient (PG) estimation becomes a challenge when we are not allowed to sample with the target policy but only have access to a dataset generated by some unknown behavior policy. Conventional methods for off-policy PG estimation often suffer from either significant bias or exponentially large variance. In this paper, we propose the double Fitted PG estimation (FPG) algorithm. FPG can work with an arbitrary policy parameterization, assuming access to a Bellman-complete value function class. In the case of linear value function approximation, we provide a tight finite-sample upper bound on policy gradient estimation error, that is governed by the amount of distribution mismatch measured in feature space. We also establish the asymptotic normality of FPG estimation error with a precise covariance characterization, which is further shown to be statistically optimal with a matching Cramer-Rao lower bound. Empirically, we evaluate the performance of FPG on both policy gradient estimation and policy optimization, using either softmax tabular or ReLU policy networks. Under various metrics, our results show that FPG significantly outperforms existing off-policy PG estimation methods based on importance sampling and variance reduction techniques.

The standard assumption in reinforcement learning (RL) is that agents observe feedback for their actions immediately. However, in practice feedback is often observed in delay. This paper studies online learning in episodic Markov decision process (MDP) with unknown transitions, adversarially changing costs, and unrestricted delayed bandit feedback. More precisely, the feedback for the agent in episode $k$ is revealed only in the end of episode $k + d^k$, where the delay $d^k$ can be changing over episodes and chosen by an oblivious adversary. We present the first algorithms that achieve near-optimal $\sqrt{K + D}$ regret, where $K$ is the number of episodes and $D = \sum_{k=1}^K d^k$ is the total delay, significantly improving upon the best known regret bound of $(K + D)^{2/3}$.

We propose throughput and cost optimal job scheduling algorithms in cloud computing platforms offering Infrastructure as a Service. We first consider online migration and propose job scheduling algorithms to minimize job migration and server running costs. We consider algorithms that assume knowledge of job-size on arrival of jobs. We characterize the optimal cost subject to system stability. We develop a drift-plus-penalty framework based algorithm that can achieve optimal cost arbitrarily closely. Specifically this algorithm yields a trade-off between delay and costs. We then relax the job-size knowledge assumption and give an algorithm that uses readily offered service to the jobs. We show that this algorithm gives order-wise identical cost as the job size based algorithm. Later, we consider offline job migration that incurs migration delays. We again present throughput optimal algorithms that minimize server running cost. We illustrate the performance of the proposed algorithms and compare these to the existing algorithms via simulation.

Massive sized survival datasets are becoming increasingly prevalent with the development of the healthcare industry. Such datasets pose computational challenges unprecedented in traditional survival analysis use-cases. A popular way for coping with massive datasets is downsampling them to a more manageable size, such that the computational resources can be afforded by the researcher. Cox proportional hazards regression has remained one of the most popular statistical models for the analysis of survival data to-date. This work addresses the settings of right censored and possibly left truncated data with rare events, such that the observed failure times constitute only a small portion of the overall sample. We propose Cox regression subsampling-based estimators that approximate their full-data partial-likelihood-based counterparts, by assigning optimal sampling probabilities to censored observations, and including all observed failures in the analysis. Asymptotic properties of the proposed estimators are established under suitable regularity conditions, and simulation studies are carried out to evaluate the finite sample performance of the estimators. We further apply our procedure on UK-biobank colorectal cancer genetic and environmental risk factors.

Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying to safety-critical applications. Primal-dual as a prevalent constrained optimization framework suffers from instability issues and lacks optimality guarantees. This paper overcomes the issues from a novel probabilistic inference perspective and proposes an Expectation-Maximization style approach to learn safe policy. We show that the safe RL problem can be decomposed to 1) a convex optimization phase with a non-parametric variational distribution and 2) a supervised learning phase. We show the unique advantages of constrained variational policy optimization by proving its optimality and policy improvement stability. A wide range of experiments on continuous robotic tasks show that the proposed method achieves significantly better performance in terms of constraint satisfaction and sample efficiency than primal-dual baselines.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司