亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For positive integers $n,r,s$ with $r > s$, the set-coloring Ramsey number $R(n;r,s)$ is the minimum $N$ such that if every edge of the complete graph $K_N$ receives a set of $s$ colors from a palette of $r$ colors, then there is a subset of $n$ vertices where all of the edges between them receive a common color. If $n$ is fixed and $\frac{s}{r}$ is less than and bounded away from $1-\frac{1}{n-1}$, then $R(n;r,s)$ is known to grow exponentially in $r$, while if $\frac{s}{r}$ is greater than and bounded away from $1-\frac{1}{n-1}$, then $R(n;r,s)$ is bounded. Here we prove bounds for $R(n;r,s)$ in the intermediate range where $\frac{s}{r}$ is close to $1 - \frac{1}{n-1}$ by establishing a connection to the maximum size of error-correcting codes near the zero-rate threshold.

相關內容

We present a polynomial-time quantum algorithm making a single query (in superposition) to a classical oracle, such that for every state $|\psi\rangle$ there exists a choice of oracle that makes the algorithm construct an exponentially close approximation of $|\psi\rangle$. Previous algorithms for this problem either used a linear number of queries and polynomial time [arXiv:1607.05256], or a constant number of queries and polynomially many ancillae but no nontrivial bound on the runtime [arXiv:2111.02999]. As corollaries we do the following: - We simplify the proof that statePSPACE $\subseteq$ stateQIP [arXiv:2108.07192] (a quantum state analogue of PSPACE $\subseteq$ IP) and show that a constant number of rounds of interaction suffices. - We show that QAC$\mathsf{_f^0}$ lower bounds for constructing explicit states would imply breakthrough circuit lower bounds for computing explicit boolean functions. - We prove that every $n$-qubit state can be constructed to within 0.01 error by an $O(2^n/n)$-size circuit over an appropriate finite gate set. More generally we give a size-error tradeoff which, by a counting argument, is optimal for any finite gate set.

Over 1.5 billion people worldwide live with hearing impairment. Despite various technologies that have been created for individuals with such disabilities, most of these technologies are either extremely expensive or inaccessible for everyday use in low-medium income countries. In order to combat this issue, we have developed a new assistive device, EchoVest, for blind/deaf people to intuitively become more aware of their environment. EchoVest transmits vibrations to the user's body by utilizing transcutaneous electric nerve stimulation (TENS) based on the source of the sounds. EchoVest also provides various features, including sound localization, sound classification, noise reduction, and depth perception. We aimed to outperform CNN-based machine-learning models, the most commonly used machine learning model for classification tasks, in accuracy and computational costs. To do so, we developed and employed a novel audio pipeline that adapts the Audio Spectrogram Transformer (AST) model, an attention-based model, for our sound classification purposes, and Fast Fourier Transforms for noise reduction. The application of Otsu's Method helped us find the optimal thresholds for background noise sound filtering and gave us much greater accuracy. In order to calculate direction and depth accurately, we applied Complex Time Difference of Arrival algorithms and SOTA localization. Our last improvement was to use blind source separation to make our algorithms applicable to multiple microphone inputs. The final algorithm achieved state-of-the-art results on numerous checkpoints, including a 95.7\% accuracy on the ESC-50 dataset for environmental sound classification.

A graph $G$ is \emph{locally irregular} if no two of its adjacent vertices have the same degree. In [Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. {\it SWAT}, 2022], the authors introduced and studied the problem of finding a locally irregular induced subgraph of a given a graph $G$ of maximum order, or, equivalently, computing a subset $S$ of $V(G)$ of minimum order, whose deletion from $G$ results in a locally irregular graph; $S$ is denoted as an \emph{optimal vertex-irregulator of $G$}. In this work we provide an in-depth analysis of the parameterised complexity of computing an optimal vertex-irregulator of a given graph $G$. Moreover, we introduce and study a variation of this problem, where $S$ is a substet of the edges of $G$; in this case, $S$ is denoted as an \emph{optimal edge-irregulator of $G$}. In particular, we prove that computing an optimal vertex-irregulator of a graph $G$ is in FPT when parameterised by the vertex integrity, neighborhood diversity or cluster deletion number of $G$, while it is $W[1]$-hard when parameterised by the feedback vertex set number or the treedepth of $G$. In the case of computing an optimal edge-irregulator of a graph $G$, we prove that this problem is in FPT when parameterised by the vertex integrity of $G$, while it is NP-hard even if $G$ is a planar bipartite graph of maximum degree $4$, and $W[1]$-hard when parameterised by the size of the solution, the feedback vertex set or the treedepth of $G$. Our results paint a comprehensive picture of the tractability of both problems studied here, considering most of the standard graph-structural parameters.

Relation prediction on knowledge graphs (KGs) is a key research topic. Dominant embedding-based methods mainly focus on the transductive setting and lack the inductive ability to generalize to new entities for inference. Existing methods for inductive reasoning mostly mine the connections between entities, i.e., relational paths, without considering the nature of head and tail entities contained in the relational context. This paper proposes a novel method that captures both connections between entities and the intrinsic nature of entities, by simultaneously aggregating RElational Paths and cOntext with a unified hieRarchical Transformer framework, namely REPORT. REPORT relies solely on relation semantics and can naturally generalize to the fully-inductive setting, where KGs for training and inference have no common entities. In the experiments, REPORT performs consistently better than all baselines on almost all the eight version subsets of two fully-inductive datasets. Moreover. REPORT is interpretable by providing each element's contribution to the prediction results.

Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

In this paper we consider algebraic geometry (AG) codes: a class of codes constructed from algebraic codes (equivalently, using function fields) by Goppa. These codes can be list-decoded using the famous Guruswami-Sudan (GS) list-decoder, but the genus $g$ of the used function field gives rise to negative term in the decoding radius, which we call the genus penalty. In this article, we present a GS-like list-decoding algorithm for arbitrary AG codes, which we call the \emph{inseparable GS list-decoder}. Apart from the multiplicity parameter $s$ and designed list size $\ell$, common for the GS list-decoder, we introduce an inseparability exponent $e$. Choosing this exponent to be positive gives rise to a list-decoder for which the genus penalty is reduced with a factor $1/p^e$ compared to the usual GS list-decoder. Here $p$ is the characteristic. Our list-decoder can be executed in $\tilde{\mathcal{O}}(s\ell^{\omega}\mu^{\omega-1}p^e(n+g))$ field operations, where $n$ is the code length.

The central limit theorem (CLT) is one of the most fundamental results in probability; and establishing its rate of convergence has been a key question since the 1940s. For independent random variables, a series of recent works established optimal error bounds under the Wasserstein-p distance (with p>=1). In this paper, we extend those results to locally dependent random variables, which include m-dependent random fields and U-statistics. Under conditions on the moments and the dependency neighborhoods, we derive optimal rates in the CLT for the Wasserstein-p distance. Our proofs rely on approximating the empirical average of dependent observations by the empirical average of i.i.d. random variables. To do so, we expand the Stein equation to arbitrary orders by adapting the Stein's dependency neighborhood method. Finally we illustrate the applicability of our results by obtaining efficient tail bounds.

When the unknown regression function of a single variable is known to have derivatives up to the $(\gamma+1)$th order bounded in absolute values by a common constant everywhere or a.e. (i.e., $(\gamma+1)$th degree of smoothness), the minimax optimal rate of the mean integrated squared error (MISE) is stated as $\left(\frac{1}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ in the literature. This paper shows that: (i) if $n\leq\left(\gamma+1\right)^{2\gamma+3}$, the minimax optimal MISE rate is $\frac{\log n}{n\log(\log n)}$ and the optimal degree of smoothness to exploit is roughly $\max\left\{ \left\lfloor \frac{\log n}{2\log\left(\log n\right)}\right\rfloor ,\,1\right\} $; (ii) if $n>\left(\gamma+1\right)^{2\gamma+3}$, the minimax optimal MISE rate is $\left(\frac{1}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ and the optimal degree of smoothness to exploit is $\gamma+1$. The fundamental contribution of this paper is a set of metric entropy bounds we develop for smooth function classes. Some of our bounds are original, and some of them improve and/or generalize the ones in the literature (e.g., Kolmogorov and Tikhomirov, 1959). Our metric entropy bounds allow us to show phase transitions in the minimax optimal MISE rates associated with some commonly seen smoothness classes as well as non-standard smoothness classes, and can also be of independent interest outside the nonparametric regression problems.

We study the problem of decomposing a polynomial $p$ into a sum of $r$ squares by minimizing a quadratically penalized objective $f_p(\mathbf{u}) = \left\lVert \sum_{i=1}^r u_i^2 - p\right\lVert^2$. This objective is nonconvex and is equivalent to the rank-$r$ Burer-Monteiro factorization of a semidefinite program (SDP) encoding the sum of squares decomposition. We show that for all univariate polynomials $p$, if $r \ge 2$ then $f_p(\mathbf{u})$ has no spurious second-order critical points, showing that all local optima are also global optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity conditions, $r$ has to be roughly the square root of the number of constraints (the degree of $p$) for there to be no spurious second-order critical points. Our proof uses tools from computational algebraic geometry and can be interpreted as constructing a certificate using the first- and second-order necessary conditions. We also show that by choosing a norm based on sampling equally-spaced points on the circle, the gradient $\nabla f_p$ can be computed in nearly linear time using fast Fourier transforms. Experimentally we demonstrate that this method has very fast convergence using first-order optimization algorithms such as L-BFGS, with near-linear scaling to million-degree polynomials.

A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative distortion. For every $k$, a spanner with size $O(n^{1+1/k})$ and stretch $(2k+1)$ can be constructed by a simple centralized greedy algorithm, and this is tight assuming Erd\H{o}s girth conjecture. In this paper we study the problem of constructing spanners in a local manner, specifically in the Local Computation Model proposed by Rubinfeld et al. (ICS 2011). We provide a randomized Local Computation Agorithm (LCA) for constructing $(2r-1)$-spanners with $\tilde{O}(n^{1+1/r})$ edges and probe complexity of $\tilde{O}(n^{1-1/r})$ for $r \in \{2,3\}$, where $n$ denotes the number of vertices in the input graph. Up to polylogarithmic factors, in both cases, the stretch factor is optimal (for the respective number of edges). In addition, our probe complexity for $r=2$, i.e., for constructing a $3$-spanner, is optimal up to polylogarithmic factors. Our result improves over the probe complexity of Parter et al. (ITCS 2019) that is $\tilde{O}(n^{1-1/2r})$ for $r \in \{2,3\}$. Both our algorithms and the algorithms of Parter et al. use a combination of neighbor-probes and pair-probes in the above-mentioned LCAs. For general $k\geq 1$, we provide an LCA for constructing $O(k^2)$-spanners with $\tilde{O}(n^{1+1/k})$ edges using $O(n^{2/3}\Delta^2)$ neighbor-probes, improving over the $\tilde{O}(n^{2/3}\Delta^4)$ algorithm of Parter et al. By developing a new randomized LCA for graph decomposition, we further improve the probe complexity of the latter task to be $O(n^{2/3-(1.5-\alpha)/k}\Delta^2)$, for any constant $\alpha>0$. This latter LCA may be of independent interest.

北京阿比特科技有限公司