FPGA-based hardware accelerators are becoming increasingly popular due to their versatility, customizability, energy efficiency, constant latency, and scalability. FPGAs can be tailored to specific algorithms, enabling efficient hardware implementations that effectively leverage algorithm parallelism. This can lead to significant performance improvements over CPUs and GPUs, particularly for highly parallel applications. For example, a recent study found that Stratix 10 FPGAs can achieve up to 90\% of the performance of a TitanX Pascal GPU while consuming less than 50\% of the power. This makes FPGAs an attractive choice for accelerating machine learning (ML) workloads. However, our research finds privacy and security vulnerabilities in existing Xilinx FPGA-based hardware acceleration solutions. These vulnerabilities arise from the lack of memory initialization and insufficient process isolation, which creates potential avenues for unauthorized access to private data used by processes. To illustrate this issue, we conducted experiments using a Xilinx ZCU104 board running the PetaLinux tool from Xilinx. We found that PetaLinux does not effectively clear memory locations associated with a terminated process, leaving them vulnerable to memory scraping attack (MSA). This paper makes two main contributions. The first contribution is an attack methodology of using the Xilinx debugger from a different user space. We find that we are able to access process IDs, virtual address spaces, and pagemaps of one user from a different user space because of lack of adequate process isolation. The second contribution is a methodology for characterizing terminated processes and accessing their private data. We illustrate this on Xilinx ML application library.
Trapdoor claw-free functions (TCFs) are immensely valuable in cryptographic interactions between a classical client and a quantum server. Typically, a protocol has the quantum server prepare a superposition of two-bit strings of a claw and then measure it using Pauli-$X$ or $Z$ measurements. In this paper, we demonstrate a new technique that uses the entire range of qubit measurements from the $XY$-plane. We show the advantage of this approach in two applications. First, building on (Brakerski et al. 2018, Kalai et al. 2022), we show an optimized two-round proof of quantumness whose security can be expressed directly in terms of the hardness of the LWE (learning with errors) problem. Second, we construct a one-round protocol for blind remote preparation of an arbitrary state on the $XY$-plane up to a Pauli-$Z$ correction.
Detecting undesired process behavior is one of the main tasks of process mining and various conformance-checking techniques have been developed to this end. These techniques typically require a normative process model as input, specifically designed for the processes to be analyzed. Such models are rarely available, though, and their creation involves considerable manual effort.However, reference process models serve as best-practice templates for organizational processes in a plethora of domains, containing valuable knowledge about general behavioral relations in well-engineered processes. These general models can thus mitigate the need for dedicated models by providing a basis to check for undesired behavior. Still, finding a perfectly matching reference model for a real-life event log is unrealistic because organizational needs can vary, despite similarities in process execution. Furthermore, event logs may encompass behavior related to different reference models, making traditional conformance checking impractical as it requires aligning process executions to individual models. To still use reference models for conformance checking, we propose a framework for mining declarative best-practice constraints from a reference model collection, automatically selecting constraints that are relevant for a given event log, and checking for best-practice violations. We demonstrate the capability of our framework to detect best-practice violations through an evaluation based on real-world process model collections and event logs.
With advancements in hardware, high-quality HMD devices are being developed by numerous companies, driving increased consumer interest in AR, VR, and MR applications. In this work, we present a new dataset, called VRBiom, of periocular videos acquired using a Virtual Reality headset. The VRBiom, targeted at biometric applications, consists of 900 short videos acquired from 25 individuals recorded in the NIR spectrum. These 10s long videos have been captured using the internal tracking cameras of Meta Quest Pro at 72 FPS. To encompass real-world variations, the dataset includes recordings under three gaze conditions: steady, moving, and partially closed eyes. We have also ensured an equal split of recordings without and with glasses to facilitate the analysis of eye-wear. These videos, characterized by non-frontal views of the eye and relatively low spatial resolutions (400 x 400), can be instrumental in advancing state-of-the-art research across various biometric applications. The VRBiom dataset can be utilized to evaluate, train, or adapt models for biometric use-cases such as iris and/or periocular recognition and associated sub-tasks such as detection and semantic segmentation. In addition to data from real individuals, we have included around 1100 PA constructed from 92 PA instruments. These PAIs fall into six categories constructed through combinations of print attacks (real and synthetic identities), fake 3D eyeballs, plastic eyes, and various types of masks and mannequins. These PA videos, combined with genuine (bona-fide) data, can be utilized to address concerns related to spoofing, which is a significant threat if these devices are to be used for authentication. The VRBiom dataset is publicly available for research purposes related to biometric applications only.
We use multivariate change point analysis methods, to identify not only mean shifts but also changes in variance across a wide array of statistical time series. Our primary objective is to empirically discern distinct eras in the evolution of baseball, shedding light on significant transformations in team performance and management strategies. We leverage a rich dataset comprising baseball statistics from the late 1800s to 2020, spanning over a century of the sport's history. Results confirm previous historical research, pinpointing well-known baseball eras, such as the Dead Ball Era, Integration Era, Steroid Era, and Post-Steroid Era. Moreover, the study delves into the detection of substantial changes in team performance, effectively identifying periods of both dynasties and collapses within a team's history. The multivariate change point analysis proves to be a valuable tool for understanding the intricate dynamics of baseball's evolution. The method offers a data-driven approach to unveil structural shifts in the sport's historical landscape, providing fresh insights into the impact of rule changes, player strategies, and external factors on baseball's evolution. This not only enhances our comprehension of baseball, showing more robust identification of eras than past univariate time series work, but also showcases the broader applicability of multivariate change point analysis in the domain of sports research and beyond.
The efficiency improvement of hardware accelerators such as single-instruction-multiple-data (SIMD) and coarse-grained reconfigurable architecture (CGRA) empowers the rapid advancement of AI and machine learning applications. These streaming applications consist of numerous vector operations that can be naturally parallelized. Despite the outstanding achievements of today's hardware accelerators, their potential is limited by their instruction set design. Traditional instruction sets, designed for microprocessors and accelerators, focus on computation and pay little attention to instruction composability and instruction-level cooperation. It leads to a rigid instruction set that is difficult to extend and significant control overhead in hardware. This paper presents an instruction set that is composable in both spatial and temporal sense and suitable for streaming applications. The proposed instruction set contains significantly fewer instruction types but can still efficiently implement complex multi-level loop structures, which is essential for accelerating streaming applications. It is also a resource-centric instruction set that can be conveniently extended by adding new hardware resources, thus creating a custom heterogeneous computation machine. Besides presenting the composable instruction set, we propose a simple yet efficient instruction scheduling algorithm. We analyzed the scalability of the scheduling algorithm and compared the efficiency of our compiled programs against RISC-V programs. The results indicate that our scheduling algorithm scales linearly, and our instruction set leads to near-optimal execution latency. The mapped applications on CIS are nearly 10 times faster than the RISC-V version.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.