Counting integer solutions of linear constraints has found interesting applications in various fields. It is equivalent to the problem of counting lattice points inside a polytope. However, state-of-the-art algorithms for this problem become too slow for even a modest number of variables. In this paper, we propose a new framework to approximate the lattice counts inside a polytope with a new random-walk sampling method. The counts computed by our approach has been proved approximately bounded by a $(\epsilon, \delta)$-bound. Experiments on extensive benchmarks show that our algorithm could solve polytopes with dozens of dimensions, which significantly outperforms state-of-the-art counters.
We consider a variant of matrix completion where entries are revealed in a biased manner, adopting a model akin to that introduced by Ma and Chen. Instead of treating this observation bias as a disadvantage, as is typically the case, the goal is to exploit the shared information between the bias and the outcome of interest to improve predictions. Towards this, we consider a natural model where the observation pattern and outcome of interest are driven by the same set of underlying latent or unobserved factors. This leads to a two stage matrix completion algorithm: first, recover (distances between) the latent factors by utilizing matrix completion for the fully observed noisy binary matrix corresponding to the observation pattern; second, utilize the recovered latent factors as features and sparsely observed noisy outcomes as labels to perform non-parametric supervised learning. The finite-sample error rates analysis suggests that, ignoring logarithmic factors, this approach is competitive with the corresponding supervised learning parametric rates. This implies the two-stage method has performance that is comparable to having access to the unobserved latent factors through exploiting the shared information between the bias and outcomes. Through empirical evaluation using a real-world dataset, we find that with this two-stage algorithm, the estimates have 30x smaller mean squared error compared to traditional matrix completion methods, suggesting the utility of the model and the method proposed in this work.
Recently, the equivariance of models with respect to a group action has become an important topic of research in machine learning. Analysis of the built-in equivariance of existing neural network architectures, as well as the study of building models that explicitly "bake in" equivariance, have become significant research areas in their own right. However, imbuing an architecture with a specific group equivariance imposes a strong prior on the types of data transformations that the model expects to see. While strictly-equivariant models enforce symmetries, real-world data does not always conform to such strict equivariances. In such cases, the prior of strict equivariance can actually prove too strong and cause models to underperform. Therefore, in this work we study a closely related topic, that of almost equivariance. We provide a definition of almost equivariance and give a practical method for encoding almost equivariance in models by appealing to the Lie algebra of a Lie group. Specifically, we define Lie algebra convolutions and demonstrate that they offer several benefits over Lie group convolutions, including being well-defined for non-compact Lie groups having non-surjective exponential map. From there, we demonstrate connections between the notions of equivariance and isometry and those of almost equivariance and almost isometry. We prove two existence theorems, one showing the existence of almost isometries within bounded distance of isometries of a manifold, and another showing the converse for Hilbert spaces. We extend these theorems to prove the existence of almost equivariant manifold embeddings within bounded distance of fully equivariant embedding functions, subject to certain constraints on the group action and the function class. Finally, we demonstrate the validity of our approach by benchmarking against datasets in fully equivariant and almost equivariant settings.
Text summarization is the process of condensing a piece of text to fewer sentences, while still preserving its content. Chat transcript, in this context, is a textual copy of a digital or online conversation between a customer (caller) and agent(s). This paper presents an indigenously (locally) developed hybrid method that first combines extractive and abstractive summarization techniques in compressing ill-punctuated or un-punctuated chat transcripts to produce more readable punctuated summaries and then optimizes the overall quality of summarization through reinforcement learning. Extensive testing, evaluations, comparisons, and validation have demonstrated the efficacy of this approach for large-scale deployment of chat transcript summarization, in the absence of manually generated reference (annotated) summaries.
We are interested in connections between the theory of fractal sets obtained as attractors of iterated function systems and process calculi. To this end, we reinterpret Milner's expressions for processes as contraction operators on a complete metric space. When the space is, for example, the plane, the denotations of fixed point terms correspond to familiar fractal sets. We give a sound and complete axiomatization of fractal equivalence, the congruence on terms consisting of pairs that construct identical self-similar sets in all interpretations. We further make connections to labelled Markov chains and to invariant measures. In all of this work, we use important results from process calculi. For example, we use Rabinovich's completeness theorem for trace equivalence in our own completeness theorem. In addition to our results, we also raise several questions related to both fractals and process calculi.
It is important to reveal the inverse dynamics of manipulators to improve control performance of model-based control. Neural networks (NNs) are promising techniques to represent complicated inverse dynamics while they require a large amount of motion data. However, motion data in dead zones of actuators is not suitable for training models decreasing the number of useful training data. In this study, based on the fact that the manipulator joint does not work irrespective of input torque in dead zones, we propose a new loss function that considers only errors of joints not in dead zones. The proposed method enables to increase in the amount of motion data available for training and the accuracy of the inverse dynamics computation. Experiments on actual equipment using a three-degree-of-freedom (DOF) manipulator showed higher accuracy than conventional methods. We also confirmed and discussed the behavior of the model of the proposed method in dead zones.
We give an example of a class of distributions that is learnable in total variation distance with a finite number of samples, but not learnable under $(\varepsilon, \delta)$-differential privacy. This refutes a conjecture of Ashtiani.
We propose a framework for descriptively analyzing sets of partial orders based on the concept of depth functions. Despite intensive studies in linear and metric spaces, there is very little discussion on depth functions for non-standard data types such as partial orders. We introduce an adaptation of the well-known simplicial depth to the set of all partial orders, the union-free generic (ufg) depth. Moreover, we utilize our ufg depth for a comparison of machine learning algorithms based on multidimensional performance measures. Concretely, we provide two examples of classifier comparisons on samples of standard benchmark data sets. Our results demonstrate promisingly the wide variety of different analysis approaches based on ufg methods. Furthermore, the examples outline that our approach differs substantially from existing benchmarking approaches, and thus adds a new perspective to the vivid debate on classifier comparison.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.