亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The development of large language models (LLMs) capable of following instructions and engaging in conversational interactions sparked increased interest in their utilization across various support tools. We investigate the utility of modern LLMs in assisting professional writers via an empirical user study (n=30). The design of our collaborative writing interface is grounded in the cognitive process model of writing that views writing as a goal-oriented thinking process encompassing non-linear cognitive activities: planning, translating, and reviewing. Participants are asked to submit a post-completion survey to provide feedback on the potential and pitfalls of LLMs as writing collaborators. Upon analyzing the writer-LLM interactions, we find that while writers seek LLM's help across all three types of cognitive activities, they find LLMs more helpful in translation and reviewing. Our findings from analyzing both the interactions and the survey responses highlight future research directions in creative writing assistance using LLMs.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Although large language models (LLMs) have demonstrated impressive text generation capabilities, they are easily misled by the untruthful context provided by users or knowledge argumentation tools, thereby producing hallucinations. To alleviate the LLMs from being misled by untruthful information and take advantage of knowledge argumentation, we propose Truth-Aware Context Selection (TACS), a lightweight method to shield untruthful context from the inputs. TACS begins by performing truth detection on the input context, leveraging the parameterized knowledge within the LLM. Subsequently, it constructs a corresponding attention mask based on the truthfulness of each position, selecting the truthful context and discarding the untruthful context. Additionally, we introduce a new evaluation metric, Disturbance Adaption Rate, to further study the LLMs' ability to accept truthful information and resist untruthful information. Experimental results show that TACS can effectively filter information in context and significantly improve the overall quality of LLMs' responses when presented with misleading information.

Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.

Despite the impressive performance across numerous tasks, large language models (LLMs) often fail in solving simple decision-making tasks due to the misalignment of the knowledge in LLMs with environments. On the contrary, reinforcement learning (RL) agents learn policies from scratch, which makes them always align with environments but difficult to incorporate prior knowledge for efficient explorations. To narrow the gap, we propose TWOSOME, a novel general online framework that deploys LLMs as decision-making agents to efficiently interact and align with embodied environments via RL without requiring any prepared datasets or prior knowledge of the environments. Firstly, we query the joint probabilities of each valid action with LLMs to form behavior policies. Then, to enhance the stability and robustness of the policies, we propose two normalization methods and summarize four prompt design principles. Finally, we design a novel parameter-efficient training architecture where the actor and critic share one frozen LLM equipped with low-rank adapters (LoRA) updated by PPO. We conduct extensive experiments to evaluate TWOSOME. i) TWOSOME exhibits significantly better sample efficiency and performance compared to the conventional RL method, PPO, and prompt tuning method, SayCan, in both classical decision-making environment, Overcooked, and simulated household environment, VirtualHome. ii) Benefiting from LLMs' open-vocabulary feature, TWOSOME shows superior generalization ability to unseen tasks. iii) Under our framework, there is no significant loss of the LLMs' original ability during online PPO finetuning.

User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.

Logical relations built on top of an operational semantics are one of the most successful proof methods in programming language semantics. In recent years, more and more expressive notions of operationally-based logical relations have been designed and applied to specific families of languages. However, a unifying abstract framework for operationally-based logical relations is still missing. We show how fibrations can provide a uniform treatment of operational logical relations, using as reference example a lambda-calculus with generic effects endowed with a novel, abstract operational semantics defined on a large class of categories. Moreover, this abstract perspective allows us to give a solid mathematical ground also to differential logical relations -- a recently introduced notion of higher-order distance between programs -- both pure and effectful, bringing them back to a common picture with traditional ones.

Large language models (LLMs) are complex artificial intelligence systems capable of understanding, generating and translating human language. They learn language patterns by analyzing large amounts of text data, allowing them to perform writing, conversation, summarizing and other language tasks. When LLMs process and generate large amounts of data, there is a risk of leaking sensitive information, which may threaten data privacy. This paper concentrates on elucidating the data privacy concerns associated with LLMs to foster a comprehensive understanding. Specifically, a thorough investigation is undertaken to delineate the spectrum of data privacy threats, encompassing both passive privacy leakage and active privacy attacks within LLMs. Subsequently, we conduct an assessment of the privacy protection mechanisms employed by LLMs at various stages, followed by a detailed examination of their efficacy and constraints. Finally, the discourse extends to delineate the challenges encountered and outline prospective directions for advancement in the realm of LLM privacy protection.

Large language models (LLMs) are demonstrating remarkable capabilities across various tasks despite lacking a foundation in human cognition. This raises the question: can these models, beyond simply mimicking human language patterns, offer insights into the mechanisms underlying human cognition? This study explores the ability of ChatGPT to predict human performance in a language-based memory task. Building upon theories of text comprehension, we hypothesize that recognizing ambiguous sentences (e.g., "Because Bill drinks wine is never kept in the house") is facilitated by preceding them with contextually relevant information. Participants, both human and ChatGPT, were presented with pairs of sentences. The second sentence was always a garden-path sentence designed to be inherently ambiguous, while the first sentence either provided a fitting (e.g., "Bill has chronic alcoholism") or an unfitting context (e.g., "Bill likes to play golf"). We measured both human's and ChatGPT's ratings of sentence relatedness, ChatGPT's memorability ratings for the garden-path sentences, and humans' spontaneous memory for the garden-path sentences. The results revealed a striking alignment between ChatGPT's assessments and human performance. Sentences deemed more related and assessed as being more memorable by ChatGPT were indeed better remembered by humans, even though ChatGPT's internal mechanisms likely differ significantly from human cognition. This finding, which was confirmed with a robustness check employing synonyms, underscores the potential of generative AI models to predict human performance accurately. We discuss the broader implications of these findings for leveraging LLMs in the development of psychological theories and for gaining a deeper understanding of human cognition.

The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP), leading to remarkable advancements in text understanding and generation. Nevertheless, alongside these strides, LLMs exhibit a critical tendency to produce hallucinations, resulting in content that is inconsistent with real-world facts or user inputs. This phenomenon poses substantial challenges to their practical deployment and raises concerns over the reliability of LLMs in real-world scenarios, which attracts increasing attention to detect and mitigate these hallucinations. In this survey, we aim to provide a thorough and in-depth overview of recent advances in the field of LLM hallucinations. We begin with an innovative taxonomy of LLM hallucinations, then delve into the factors contributing to hallucinations. Subsequently, we present a comprehensive overview of hallucination detection methods and benchmarks. Additionally, representative approaches designed to mitigate hallucinations are introduced accordingly. Finally, we analyze the challenges that highlight the current limitations and formulate open questions, aiming to delineate pathways for future research on hallucinations in LLMs.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司