In this paper, we present a novel spectral renormalization exponential integrator method for solving gradient flow problems. Our method is specifically designed to simultaneously satisfy discrete analogues of the energy dissipation laws and achieve high-order accuracy in time. To accomplish this, our method first incorporates the energy dissipation law into the target gradient flow equation by introducing a time-dependent spectral renormalization (TDSR) factor. Then, the coupled equations are discretized using the spectral approximation in space and the exponential time differencing (ETD) in time. Finally, the resulting fully discrete nonlinear system is decoupled and solved using the Picard iteration at each time step. Furthermore, we introduce an extra enforcing term into the system for updating the TDSR factor, which greatly relaxes the time step size restriction of the proposed method and enhances its computational efficiency. Extensive numerical tests with various gradient flows are also presented to demonstrate the accuracy and effectiveness of our method as well as its high efficiency when combined with an adaptive time-stepping strategy for long-term simulations.
Our main contribution in this paper is to present an inexact Matrix-Newton algorithm that uses the tools for Newton's method in Banach spaces to solve a particular type of matrix valued problem: the nonlinear eigenvalue problem with eigenvector dependency (NEPv). We provide the conditions for our algorithm to be applicable to NEPv and show how to exploit the problem structure for an ef- ficient implementation. Various numerical experiments are provided that indicate the advantage of quadratic order of convergence over the linear order of the well- established SCF algorithm.
In this paper, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in the case of large Lam\'e parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification, poroelastic channel flow simulation, and test the robustness of block-diagonal preconditioners with respect to model parameters.
In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, the gradient of the unique viscosity solution of the PDE exists and coincides with the second component of the unique solution of the stochastic fixed-point equation.
In this paper I propose a generative model of supervised learning that unifies two approaches to supervised learning, using a concept of a correct loss function. Addressing two measurability problems, which have been ignored in statistical learning theory, I propose to use convergence in outer probability to characterize the consistency of a learning algorithm. Building upon these results, I extend a result due to Cucker-Smale, which addresses the learnability of a regression model, to the setting of a conditional probability estimation problem. Additionally, I present a variant of Vapnik-Stefanuyk's regularization method for solving stochastic ill-posed problems, and using it to prove the generalizability of overparameterized supervised learning models.
For a nonlinear dynamical system that depends on parameters, the paper introduces a novel tensorial reduced-order model (TROM). The reduced model is projection-based, and for systems with no parameters involved, it resembles proper orthogonal decomposition (POD) combined with the discrete empirical interpolation method (DEIM). For parametric systems, TROM employs low-rank tensor approximations in place of truncated SVD, a key dimension-reduction technique in POD with DEIM. Three popular low-rank tensor compression formats are considered for this purpose: canonical polyadic, Tucker, and tensor train. The use of multilinear algebra tools allows the incorporation of information about the parameter dependence of the system into the reduced model and leads to a POD-DEIM type ROM that (i) is parameter-specific (localized) and predicts the system dynamics for out-of-training set (unseen) parameter values, (ii) mitigates the adverse effects of high parameter space dimension, (iii) has online computational costs that depend only on tensor compression ranks but not on the full-order model size, and (iv) achieves lower reduced space dimensions compared to the conventional POD-DEIM ROM. The paper explains the method, analyzes its prediction power, and assesses its performance for two specific parameter-dependent nonlinear dynamical systems.
In this paper, we introduce a massively multilingual speech corpora with fine-grained phonemic transcriptions, encompassing more than 115 languages from diverse language families. Based on this multilingual dataset, we propose CLAP-IPA, a multilingual phoneme-speech contrastive embedding model capable of open-vocabulary matching between speech signals and phonemically transcribed keywords or arbitrary phrases. The proposed model has been tested on two fieldwork speech corpora in 97 unseen languages, exhibiting strong generalizability across languages. Comparison with a text-based model shows that using phonemes as modeling units enables much better crosslinguistic generalization than orthographic texts.
We present a formulation for high-order generalized periodicity conditions in the context of a high-order electromechanical theory including flexoelectricity, strain gradient elasticity and gradient dielectricity, with the goal of studying periodic architected metamaterials. Such theory results in fourth-order governing partial differential equations, and the periodicity conditions involve continuity across the periodic boundary of primal fields (displacement and electric potential) and their normal derivatives, continuity of the corresponding dual generalized forces (tractions, double tractions, surface charge density and double surface charge density). Rather than imposing these conditions numerically as explicit constraints, we develop an approximation space which fulfils generalized periodicity by construction. Our method naturally allows us to impose general macroscopic fields (strains/stresses and electric fields/electric displacements) along arbitrary directions, enabling the characterization of the material anisotropy. We apply the proposed method to study periodic architected metamaterials with apparent piezoelectricity. We first verify the method by directly comparing the results with a large periodic structure, then apply it to evaluate the anisotropic apparently piezoelectricity of a geometrically polarized 2D lattice, and finally demonstrate the application of the method in a 3D architected metamaterial.
In this work, we propose extropy measures based on density copula, distributional copula, and survival copula, and explore their properties. We study the effect of monotone transformations for the proposed measures and obtain bounds. We establish connections between cumulative copula extropy and three dependence measures: Spearman's rho, Kendall's tau, and Blest's measure of rank correlation. Finally, we propose estimators for the cumulative copula extropy and survival copula extropy with an illustration using real life datasets.
We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$. Numerical analysis and experiments are provided to study its performance. Our method has the same symbol $|\xi|^\alpha$ as the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$ at the discrete level, and thus it can be viewed as the exact discrete analogue of the fractional Laplacian. This {\it unique feature} distinguishes our method from other existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral methods in the literature, which are usually limited to periodic boundary conditions (see Remark \ref{remark0}). Numerical analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness matrix, and thus fast algorithms can be developed for efficient matrix-vector products. The computational complexity is ${\mathcal O}(2N\log(2N))$, and the memory storage is ${\mathcal O}(N)$ with $N$ the total number of points. Extensive numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving various problems.
This paper presents a novel centralized, variational data assimilation approach for calibrating transient dynamic models in electrical power systems, focusing on load model parameters. With the increasing importance of inverter-based resources, assessing power systems' dynamic performance under disturbances has become challenging, necessitating robust model calibration methods. The proposed approach expands on previous Bayesian frameworks by establishing a posterior distribution of parameters using an approximation around the maximum a posteriori value. We illustrate the efficacy of our method by generating events of varying intensity, highlighting its ability to capture the systems' evolution accurately and with associated uncertainty estimates. This research improves the precision of dynamic performance assessments in modern power systems, with potential applications in managing uncertainties and optimizing system operations.